{"title":"Large Language Models for Efficient Medical Information Extraction.","authors":"Navya Bhagat, Olivia Mackey, Adam Wilcox","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting valuable insights from unstructured clinical narrative reports is a challenging yet crucial task in the healthcare domain as it allows healthcare workers to treat patients more efficiently and improves the overall standard of care. We employ ChatGPT, a Large language model (LLM), and compare its performance to manual reviewers. The review focuses on four key conditions: family history of heart disease, depression, heavy smoking, and cancer. The evaluation of a diverse sample of History and Physical (H&P) Notes, demonstrates ChatGPT's remarkable capabilities. Notably, it exhibits exemplary results in sensitivity for depression and heavy smokers and specificity for cancer. We identify areas for improvement as well, particularly in capturing nuanced semantic information related to family history of heart disease and cancer. With further investigation, ChatGPT holds substantial potential for advancements in medical information extraction.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting valuable insights from unstructured clinical narrative reports is a challenging yet crucial task in the healthcare domain as it allows healthcare workers to treat patients more efficiently and improves the overall standard of care. We employ ChatGPT, a Large language model (LLM), and compare its performance to manual reviewers. The review focuses on four key conditions: family history of heart disease, depression, heavy smoking, and cancer. The evaluation of a diverse sample of History and Physical (H&P) Notes, demonstrates ChatGPT's remarkable capabilities. Notably, it exhibits exemplary results in sensitivity for depression and heavy smokers and specificity for cancer. We identify areas for improvement as well, particularly in capturing nuanced semantic information related to family history of heart disease and cancer. With further investigation, ChatGPT holds substantial potential for advancements in medical information extraction.