{"title":"Low-Cost Histopathological Mitosis Detection for Microscope-acquired Images.","authors":"Bilal Shabbir, Saira Saleem, Iffat Aleem, Nida Babar, Hammad Farooq, Asif Loya, Hammad Naveed","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer outcomes are poor in resource-limited countries owing to high costs and insufficient pathologist-population ratio. The advent of digital pathology has assisted in improving cancer outcomes, however, Whole Slide Image scanners are expensive and not affordable in low-income countries. Microscope-acquired images on the other hand are cheap to collect and can be more viable for automation of cancer detection. In this study, we propose LCH-Network, a novel method to identify the cancer mitotic count from microscope-acquired images. We introduced Label Mix, and also synthesized images using GANs to handle data imbalance. Moreover, we applied progressive resolution to handle different image scales for mitotic localization. We achieved F1-Score of 0.71 and outperformed other existing techniques. Our findings enable mitotic count estimation from microscopic images with a low-cost setup. Clinically, our method could help avoid presumptive treatment without a confirmed cancer diagnosis.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"409-418"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer outcomes are poor in resource-limited countries owing to high costs and insufficient pathologist-population ratio. The advent of digital pathology has assisted in improving cancer outcomes, however, Whole Slide Image scanners are expensive and not affordable in low-income countries. Microscope-acquired images on the other hand are cheap to collect and can be more viable for automation of cancer detection. In this study, we propose LCH-Network, a novel method to identify the cancer mitotic count from microscope-acquired images. We introduced Label Mix, and also synthesized images using GANs to handle data imbalance. Moreover, we applied progressive resolution to handle different image scales for mitotic localization. We achieved F1-Score of 0.71 and outperformed other existing techniques. Our findings enable mitotic count estimation from microscopic images with a low-cost setup. Clinically, our method could help avoid presumptive treatment without a confirmed cancer diagnosis.