Inhibition of ricin A‐chain (RTA) catalytic activity by a viral genome‐linked protein (VPg).

A. Domashevskiy
{"title":"Inhibition of ricin A‐chain (RTA) catalytic activity by a viral genome‐linked protein (VPg).","authors":"A. Domashevskiy","doi":"10.1096/fasebj.2020.34.s1.08854","DOIUrl":null,"url":null,"abstract":"Ricin is a plant derived protein toxin produced by the castor bean plant (Ricinus communis). The Centers for Disease Control (CDC) classifies ricin as a Category B biological agent. Currently, there is neither an effective vaccine that can be used to protect against ricin exposure nor a therapeutic to reverse the effects once exposed. Here we quantitatively characterize interactions between catalytic ricin A‐chain (RTA) and a viral genome‐linked protein (VPg) from turnip mosaic virus (TuMV). VPg and its N‐terminal truncated variant, VPg1‐110, bind to RTA and abolish ricin’s catalytic depurination of 28S rRNA in vitro and in a cell‐free rabbit reticulocyte translational system. RTA and VPg bind in a 1 to 1 stoichiometric ratio, and their binding affinity increases ten‐fold as temperature elevates (5 °C to 37 °C). RTA‐VPg binary complex formation is enthalpically driven and favored by entropy, resulting in an overall favorable energy, ΔG = −136.8 kJ/mol. Molecular modeling supports our experimental observations and predicts a major contribution of electrostatic interactions, suggesting an allosteric mechanism of downregulation of RTA activity through conformational changes in RTA structure, and/or disruption of binding with the ribosomal stalk. Fluorescence anisotropy studies show that heat affects the rate constant and the activation energy for the RTA‐VPg complex, Ea = −62.1 kJ/mol. The thermodynamic and kinetic findings presented here are an initial lead study with promising results and provides a rational approach for synthesis of therapeutic peptides that successfully eliminate toxicity of ricin, and other cytotoxic RIPs.","PeriodicalId":22447,"journal":{"name":"The FASEB Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1096/fasebj.2020.34.s1.08854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ricin is a plant derived protein toxin produced by the castor bean plant (Ricinus communis). The Centers for Disease Control (CDC) classifies ricin as a Category B biological agent. Currently, there is neither an effective vaccine that can be used to protect against ricin exposure nor a therapeutic to reverse the effects once exposed. Here we quantitatively characterize interactions between catalytic ricin A‐chain (RTA) and a viral genome‐linked protein (VPg) from turnip mosaic virus (TuMV). VPg and its N‐terminal truncated variant, VPg1‐110, bind to RTA and abolish ricin’s catalytic depurination of 28S rRNA in vitro and in a cell‐free rabbit reticulocyte translational system. RTA and VPg bind in a 1 to 1 stoichiometric ratio, and their binding affinity increases ten‐fold as temperature elevates (5 °C to 37 °C). RTA‐VPg binary complex formation is enthalpically driven and favored by entropy, resulting in an overall favorable energy, ΔG = −136.8 kJ/mol. Molecular modeling supports our experimental observations and predicts a major contribution of electrostatic interactions, suggesting an allosteric mechanism of downregulation of RTA activity through conformational changes in RTA structure, and/or disruption of binding with the ribosomal stalk. Fluorescence anisotropy studies show that heat affects the rate constant and the activation energy for the RTA‐VPg complex, Ea = −62.1 kJ/mol. The thermodynamic and kinetic findings presented here are an initial lead study with promising results and provides a rational approach for synthesis of therapeutic peptides that successfully eliminate toxicity of ricin, and other cytotoxic RIPs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病毒基因组连接蛋白(VPg)对蓖麻毒素 A 链(RTA)催化活性的抑制。
蓖麻毒素是由蓖麻(Ricinus communis)植物产生的一种植物衍生蛋白质毒素。美国疾病控制中心(CDC)将蓖麻毒素列为 B 类生物制剂。目前,既没有有效的疫苗可以用来防止接触蓖麻毒素,也没有治疗方法可以在接触后逆转蓖麻毒素的影响。在这里,我们定量描述了催化蓖麻毒素 A 链(RTA)与来自芜菁花叶病毒(TuMV)的病毒基因组连接蛋白(VPg)之间的相互作用。VPg 及其 N 端截短变体 VPg1-110 与 RTA 结合,并在体外和无细胞兔网状细胞翻译系统中抑制蓖麻毒素对 28S rRNA 的催化去嘌呤作用。RTA 和 VPg 的结合比例为 1:1,随着温度的升高(5 °C 至 37 °C),它们的结合亲和力增加了 10 倍。RTA-VPg 二元复合物的形成是由焓驱动的,并受到熵的影响,从而产生了总的有利能量 ΔG = -136.8 kJ/mol。分子建模支持我们的实验观察,并预测静电相互作用的主要作用,这表明存在一种异构机制,即通过 RTA 结构的构象变化和/或破坏与核糖体柄的结合来降低 RTA 的活性。荧光各向异性研究表明,热量会影响 RTA-VPg 复合物的速率常数和活化能(Ea = -62.1 kJ/mol)。本文介绍的热力学和动力学研究结果是一项初步的先导研究,结果很有希望,为合成治疗肽提供了一种合理的方法,可成功消除蓖麻毒素和其他细胞毒性 RIPs 的毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Lycopene on Growth Factor Response in Prostate Cancer Cells Metabolic rewiring of the hypertensive kidney Non‐Enzymatic Lysine Lactoylation of Glycolytic Enzymes Photoaffinity Approach Reveals Antibiotic Adjuvant Activity toward Pseudomonas aeruginosa A Novel Multi‐marker Discovery Approach Identifies New Biomarkers for Parkinson’s Disease in Older People: an EXosomes in PArkiNson Disease (EXPAND) Ancillary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1