Load frequency control of interconnected power system using cuckoo search algorithm

Soumya Mishra, Pujari Harish Kumar, Rajarajan Ramasamy, Renjini Edayillam Nambiar, Praveena Puvvada
{"title":"Load frequency control of interconnected power system using cuckoo search algorithm","authors":"Soumya Mishra, Pujari Harish Kumar, Rajarajan Ramasamy, Renjini Edayillam Nambiar, Praveena Puvvada","doi":"10.11591/eei.v13i3.6714","DOIUrl":null,"url":null,"abstract":"This paper presents a new time-domain multi-objective function approach for solving load frequency control issue in an interconnected power system. The performance of interconnected power system in each area is validated for overshoot and settling time values of frequency change and tie-line power exchange. An objective function is created with the goal of enhancing proportional integral derivative (PID) controller settings by reducing overshoot and achieving faster time-domain settling times. The efficiency of the proposed time-domain multi-objective function is evaluated in a two-area thermal power plant using a nature-inspired cuckoo search optimization (CSA) technique. By comparing the time-domain simulation results of the test system with the existing integral error-based objective functions IAE, ISE, ITAE, and ITSE, the proposed objective function is validated. Further, a sensitivity analysis were carried out to analyze the robustness of the proposed multi-objective function under various uncertain conditions.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"11 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new time-domain multi-objective function approach for solving load frequency control issue in an interconnected power system. The performance of interconnected power system in each area is validated for overshoot and settling time values of frequency change and tie-line power exchange. An objective function is created with the goal of enhancing proportional integral derivative (PID) controller settings by reducing overshoot and achieving faster time-domain settling times. The efficiency of the proposed time-domain multi-objective function is evaluated in a two-area thermal power plant using a nature-inspired cuckoo search optimization (CSA) technique. By comparing the time-domain simulation results of the test system with the existing integral error-based objective functions IAE, ISE, ITAE, and ITSE, the proposed objective function is validated. Further, a sensitivity analysis were carried out to analyze the robustness of the proposed multi-objective function under various uncertain conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用布谷鸟搜索算法控制互联电力系统的负载频率
本文提出了一种新的时域多目标函数方法,用于解决互联电力系统中的负载频率控制问题。针对频率变化的过冲值和沉降时间值以及连接线功率交换,对各地区互联电力系统的性能进行了验证。创建目标函数的目的是通过减少过冲和实现更快的时域平稳时间来增强比例积分导数 (PID) 控制器的设置。利用自然启发的布谷鸟搜索优化(CSA)技术,在双区火力发电厂中评估了所提出的时域多目标函数的效率。通过将测试系统的时域仿真结果与现有的基于积分误差的目标函数 IAE、ISE、ITAE 和 ITSE 进行比较,验证了所提出的目标函数。此外,还进行了敏感性分析,以分析所提出的多目标函数在各种不确定条件下的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1