Ultra-Efficient Low-Power Retinal Nano Electronic Circuit for Edge Enhancement and Detection Using 7 nm FinFET Technology

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Nanoelectronics and Optoelectronics Pub Date : 2024-06-01 DOI:10.1166/jno.2024.3616
Md Turiqul Islam, A. Al-Shidaifat, Mohammad Khaleqi Qaleh Jooq, Hanjung Song
{"title":"Ultra-Efficient Low-Power Retinal Nano Electronic Circuit for Edge Enhancement and Detection Using 7 nm FinFET Technology","authors":"Md Turiqul Islam, A. Al-Shidaifat, Mohammad Khaleqi Qaleh Jooq, Hanjung Song","doi":"10.1166/jno.2024.3616","DOIUrl":null,"url":null,"abstract":"This study proposed a 7 nm FinFET based analog one pixel circuit block inspired by lateral inhibition phenomenon to perform edge enhancing and edge detection of optoelectronic image. This plays a crucial role in retinomorphic applications like artificial human retinal functions. Proposed\n Edge enhancement and edge detection circuits are constructed using two distinct 750×750-pixel silicon networks. First the single pixel circuit cell is reconstructed with the lateral inhibition phenomenon, then the circuit using GPDK (Generic Process Design Kit) in 180 nm, 90 nm, and\n 45 nm CMOS technology is designed. We used 3×3 convolution process for image masking in digital and analog image signal processing which gives more accuracy in term of object recognition. The power consumption in each case is obtained to be approximately 19.71 μW, 4.18 μW\n and 1.62 μW for edge enhancing and 23.76 μW, 7.99 μW and 3.41 μW for edge detection which is much larger than the power consumed by the same circuit is implemented with 7 nm FinFET (Fin Field Effect Transistor) technology, 21.91 pW and 24.85 pW. In addition,\n the size reduction of the circuit reduced by 84% compared with 45 nm CMOS, increases the accuracy of the circuit by 30%. Results confirm that FinFET based single pixel circuit consumes less power, reduces size, and gives higher accuracy. The output from all the circuits has been matched with\n the biological response.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2024.3616","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposed a 7 nm FinFET based analog one pixel circuit block inspired by lateral inhibition phenomenon to perform edge enhancing and edge detection of optoelectronic image. This plays a crucial role in retinomorphic applications like artificial human retinal functions. Proposed Edge enhancement and edge detection circuits are constructed using two distinct 750×750-pixel silicon networks. First the single pixel circuit cell is reconstructed with the lateral inhibition phenomenon, then the circuit using GPDK (Generic Process Design Kit) in 180 nm, 90 nm, and 45 nm CMOS technology is designed. We used 3×3 convolution process for image masking in digital and analog image signal processing which gives more accuracy in term of object recognition. The power consumption in each case is obtained to be approximately 19.71 μW, 4.18 μW and 1.62 μW for edge enhancing and 23.76 μW, 7.99 μW and 3.41 μW for edge detection which is much larger than the power consumed by the same circuit is implemented with 7 nm FinFET (Fin Field Effect Transistor) technology, 21.91 pW and 24.85 pW. In addition, the size reduction of the circuit reduced by 84% compared with 45 nm CMOS, increases the accuracy of the circuit by 30%. Results confirm that FinFET based single pixel circuit consumes less power, reduces size, and gives higher accuracy. The output from all the circuits has been matched with the biological response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 7 纳米 FinFET 技术实现边缘增强和检测的超高效低功耗视网膜纳米电子电路
本研究受横向抑制现象的启发,提出了一种基于 7 纳米 FinFET 的模拟单像素电路块,用于执行光电图像的边缘增强和边缘检测。这在人工视网膜功能等视网膜形态应用中起着至关重要的作用。所提出的边缘增强和边缘检测电路是利用两个不同的 750×750 像素硅网络构建的。首先利用横向抑制现象重建单像素电路单元,然后利用 GPDK(通用工艺设计工具包)在 180 纳米、90 纳米和 45 纳米 CMOS 技术上设计电路。在数字和模拟图像信号处理中,我们使用 3×3 卷积过程进行图像遮蔽,从而提高了物体识别的准确性。在每种情况下,边缘增强的功耗分别约为 19.71 μW、4.18 μW 和 1.62 μW,边缘检测的功耗分别约为 23.76 μW、7.99 μW 和 3.41 μW,远大于采用 7 nm FinFET(鳍式场效应晶体管)技术实现的相同电路的功耗(21.91 pW 和 24.85 pW)。此外,与 45 纳米 CMOS 相比,电路尺寸缩小了 84%,精度提高了 30%。结果证实,基于 FinFET 的单像素电路功耗更低、体积更小、精度更高。所有电路的输出都与生物反应相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
期刊最新文献
Design and Numerical Analysis of Double Encoder-Swinnets-A Novel Swin Transformers-Based Diabetic Foot Design of Fostered Power Terahertz VLSI Testing Using Deep Neural Network and Embrace User Intent Optimization Multi-Objective Intelligent Optimization Design Method of Microstrip Antenna Based on Back Propagation Neural Network Effective Stress Detection and Classification System Using African Buffalo Optimization and Recalling-Enhanced Recurrent Neural Network for Nano-Electronic Typed Data Hydrothermal Synthesis of Metal Ferrite Nanocomposites for Energy Storage Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1