Study of the Self-starting Performance of a Vertical-axis Wind Turbine

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-06-01 DOI:10.47176/jafm.17.6.2295
Z. Xu, X. Dong, K. Li, Q. Zhou, Y. Zhao
{"title":"Study of the Self-starting Performance of a Vertical-axis Wind Turbine","authors":"Z. Xu, X. Dong, K. Li, Q. Zhou, Y. Zhao","doi":"10.47176/jafm.17.6.2295","DOIUrl":null,"url":null,"abstract":"The self-starting performance of vertical-axis wind turbines (VAWTs) is crucial for their widespread utilization. Conventional evaluation methods using the static torque coefficient (CTS) or self-starting time have limitations. \"The minimum 1st derivative of angular acceleration in the lift acceleration state\" is proposed to serve as a suitable indicator for the completion of self-starting. Understanding the behavior of the self-starting process in VAWTs is crucial for optimizing power output. A comprehensive methodology is used that integrates experiments and computational fluid dynamics (CFD). Wind tunnel experiments are conducted to evaluate the self-starting and power output performance of the turbines. CFD is employed utilizing the Fluent 6DOF module to investigate the torque and flow field characteristics during the self-starting process. Additionally, the objectives of our study are to investigate the effect of static evaluation methods on the dynamic start-up process and to explore the effects of airfoil type, pitch angle, and inlet wind speed on the self-starting behavior of turbines. The results indicate that a high CTS ensures initial rotation, but the subsequent self-starting time remains independent of this factor. Increasing the pitch angle enhances the self-starting performance. At an inlet speed of 5 m/s, for the NACA2418 airfoil turbine, the self-starting times for pitch angles of 10° and 5° are reduced by 20% and 12%, respectively, compared to that","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2295","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The self-starting performance of vertical-axis wind turbines (VAWTs) is crucial for their widespread utilization. Conventional evaluation methods using the static torque coefficient (CTS) or self-starting time have limitations. "The minimum 1st derivative of angular acceleration in the lift acceleration state" is proposed to serve as a suitable indicator for the completion of self-starting. Understanding the behavior of the self-starting process in VAWTs is crucial for optimizing power output. A comprehensive methodology is used that integrates experiments and computational fluid dynamics (CFD). Wind tunnel experiments are conducted to evaluate the self-starting and power output performance of the turbines. CFD is employed utilizing the Fluent 6DOF module to investigate the torque and flow field characteristics during the self-starting process. Additionally, the objectives of our study are to investigate the effect of static evaluation methods on the dynamic start-up process and to explore the effects of airfoil type, pitch angle, and inlet wind speed on the self-starting behavior of turbines. The results indicate that a high CTS ensures initial rotation, but the subsequent self-starting time remains independent of this factor. Increasing the pitch angle enhances the self-starting performance. At an inlet speed of 5 m/s, for the NACA2418 airfoil turbine, the self-starting times for pitch angles of 10° and 5° are reduced by 20% and 12%, respectively, compared to that
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直轴风力发电机自启动性能研究
垂直轴风力涡轮机(VAWT)的自启动性能对其广泛应用至关重要。使用静扭矩系数(CTS)或自启动时间的传统评估方法存在局限性。建议将 "升力加速度状态下角加速度的最小 1 次导数 "作为自启动完成的合适指标。了解 VAWT 自启动过程的行为对优化功率输出至关重要。我们采用了一种将实验和计算流体动力学 (CFD) 相结合的综合方法。风洞实验用于评估涡轮机的自启动和功率输出性能。利用 Fluent 6DOF 模块进行 CFD,以研究自启动过程中的扭矩和流场特性。此外,我们的研究目标还包括研究静态评估方法对动态启动过程的影响,以及探索机翼类型、变桨角和入口风速对涡轮机自启动行为的影响。结果表明,高 CTS 可确保初始旋转,但随后的自启动时间仍与该因素无关。增大变桨角可提高自启动性能。在入口速度为 5 米/秒时,对于 NACA2418 翼面涡轮机,桨距角为 10° 和 5° 的自启动时间分别比 10° 和 5° 的自启动时间缩短了 20% 和 12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1