Monitoring an Ecosystem in Crisis: Measuring Seagrass Meadow Loss Using Deep Learning in Mosquito Lagoon, Florida

Stephanie A. Insalaco, Hannah V. Herrero, Russ Limber, Clancy Oliver, William B. Wolfson
{"title":"Monitoring an Ecosystem in Crisis: Measuring Seagrass Meadow Loss Using Deep Learning in Mosquito Lagoon, Florida","authors":"Stephanie A. Insalaco, Hannah V. Herrero, Russ Limber, Clancy Oliver, William B. Wolfson","doi":"10.14358/pers.24-00001r2","DOIUrl":null,"url":null,"abstract":"The ecosystem of Mosquito Lagoon, Florida, has been rapidly deteriorating since the 2010s, with a notable decline in keystone seagrass species. Seagrass is vital for many species in the lagoon, but nutrient overloading, algal blooms, boating, manatee grazing, and other factors have\n led to its loss. To understand this decline, a deep neural network analyzed Landsat imagery from 2000 to 2020. Results showed significant seagrass loss post-2013, coinciding with the 2011–2013 super algal bloom. Seagrass abundance varied annually, with the model performing best in years\n with higher seagrass coverage. While the deep learning method successfully identified seagrass, it also revealed that recent seagrass coverage is almost non-existent. This monitoring approach could aid in ecosystem recovery if coupled with appropriate policies for Mosquito Lagoon's restoration.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"11 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.24-00001r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ecosystem of Mosquito Lagoon, Florida, has been rapidly deteriorating since the 2010s, with a notable decline in keystone seagrass species. Seagrass is vital for many species in the lagoon, but nutrient overloading, algal blooms, boating, manatee grazing, and other factors have led to its loss. To understand this decline, a deep neural network analyzed Landsat imagery from 2000 to 2020. Results showed significant seagrass loss post-2013, coinciding with the 2011–2013 super algal bloom. Seagrass abundance varied annually, with the model performing best in years with higher seagrass coverage. While the deep learning method successfully identified seagrass, it also revealed that recent seagrass coverage is almost non-existent. This monitoring approach could aid in ecosystem recovery if coupled with appropriate policies for Mosquito Lagoon's restoration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监测危机中的生态系统:利用深度学习测量佛罗里达州蚊子泻湖的海草草甸损失
佛罗里达州蚊子泻湖的生态系统自 2010 年代以来迅速恶化,关键海草物种明显减少。海草对泻湖中的许多物种至关重要,但营养过剩、藻类大量繁殖、划船、海牛吃草以及其他因素导致了海草的减少。为了了解这种减少,一个深度神经网络分析了 2000 年至 2020 年的 Landsat 图像。结果显示,2013 年后海草大量减少,与 2011-2013 年的超级藻华相吻合。海草丰度每年都不同,模型在海草覆盖率较高的年份表现最佳。虽然深度学习方法成功识别了海草,但它也揭示了近期海草覆盖率几乎为零的情况。如果配合适当的蚊子湖恢复政策,这种监测方法将有助于生态系统的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1