Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice

IF 4.3 2区 医学 Q1 NEUROSCIENCES Neurobiology of Stress Pub Date : 2024-06-01 DOI:10.1016/j.ynstr.2024.100654
Lianghui Meng , Xuefeng Zheng , Keman Xie, Yifei Li, Danlei Liu, Yuanyuan Xu, Jifeng Zhang, Fengming Wu, Guoqing Guo
{"title":"Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice","authors":"Lianghui Meng ,&nbsp;Xuefeng Zheng ,&nbsp;Keman Xie,&nbsp;Yifei Li,&nbsp;Danlei Liu,&nbsp;Yuanyuan Xu,&nbsp;Jifeng Zhang,&nbsp;Fengming Wu,&nbsp;Guoqing Guo","doi":"10.1016/j.ynstr.2024.100654","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100654"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235228952400050X/pdfft?md5=6b0622f56c031da0a2696b424f60f254&pid=1-s2.0-S235228952400050X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235228952400050X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢性疼痛诱导的下丘脑外侧谷氨酸能神经元过度兴奋导致雄性小鼠出现抑郁样行为以及学习和记忆障碍
慢性疼痛可诱发人类情绪紊乱和认知功能障碍,如焦虑、抑郁以及学习和记忆障碍。然而,人们对慢性疼痛引起的焦虑和抑郁样行为以及学习和记忆障碍所涉及的特定神经网络仍然知之甚少。本研究的行为测试结果表明,慢性疼痛会诱发雄性小鼠的焦虑和抑郁样行为以及学习和记忆障碍。c-Fos免疫荧光和纤维光度记录显示,慢性疼痛小鼠LH中的谷氨酸能神经元被选择性激活。接着,使用光遗传学和化学遗传学方法激活了正常小鼠 LH 的谷氨酸能神经元,结果再现了一些类似抑郁的行为以及记忆损伤,但没有再现类似焦虑的行为。最后,抑制慢性疼痛小鼠 LH 中的谷氨酸能神经元可有效缓解焦虑和抑郁样行为以及学习和记忆障碍。综上所述,我们的研究结果表明,LH 中谷氨酸能神经元的过度兴奋参与了慢性疼痛诱发的抑郁样行为以及学习和记忆损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Stress
Neurobiology of Stress Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
9.40
自引率
4.00%
发文量
74
审稿时长
48 days
期刊介绍: Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal. Basic, translational and clinical research on the following topics as they relate to stress will be covered: Molecular substrates and cell signaling, Genetics and epigenetics, Stress circuitry, Structural and physiological plasticity, Developmental Aspects, Laboratory models of stress, Neuroinflammation and pathology, Memory and Cognition, Motivational Processes, Fear and Anxiety, Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse), Neuropsychopharmacology.
期刊最新文献
Behavioral coping with chronic defeat stress in mice: A systematic review of current protocols Sex specific gut-microbiota signatures of resilient and comorbid gut-brain phenotypes induced by early life stress Transcriptome dynamics in mouse amygdala under acute and chronic stress revealed by thiol-labeled RNA sequencing Transient impact of chronic social stress on effort-based reward motivation in non-food restricted mice: Involvement of corticosterone Acute stress activates basolateral amygdala neurons expressing corticotropin-releasing hormone receptor type 1 (CRHR1): Topographical distribution and projection-specific activation in male and female rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1