Trung Dung Nguyen, Trung Kien Pham, Chi Kien Ha, Long Ho Le, Thanh Quyen Ngo, Hoanh Nguyen
{"title":"Combining dual attention mechanism and efficient feature aggregation for road and vehicle segmentation from UAV imagery","authors":"Trung Dung Nguyen, Trung Kien Pham, Chi Kien Ha, Long Ho Le, Thanh Quyen Ngo, Hoanh Nguyen","doi":"10.11591/eei.v13i3.6742","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have gained significant popularity in recent years due to their ability to capture high-resolution aerial imagery for various applications, including traffic monitoring, urban planning, and disaster management. Accurate road and vehicle segmentation from UAV imagery plays a crucial role in these applications. In this paper, we propose a novel approach combining dual attention mechanisms and efficient multi-layer feature aggregation to enhance the performance of road and vehicle segmentation from UAV imagery. Our approach integrates a spatial attention mechanism and a channel-wise attention mechanism to enable the model to selectively focus on relevant features for segmentation tasks. In conjunction with these attention mechanisms, we introduce an efficient multi-layer feature aggregation method that synthesizes and integrates multi-scale features at different levels of the network, resulting in a more robust and informative feature representation. Our proposed method is evaluated on the UAVid semantic segmentation dataset, showcasing its exceptional performance in comparison to renowned approaches such as U-Net, DeepLabv3+, and SegNet. The experimental results affirm that our approach surpasses these state-of-the-art methods in terms of segmentation accuracy.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"32 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i3.6742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) have gained significant popularity in recent years due to their ability to capture high-resolution aerial imagery for various applications, including traffic monitoring, urban planning, and disaster management. Accurate road and vehicle segmentation from UAV imagery plays a crucial role in these applications. In this paper, we propose a novel approach combining dual attention mechanisms and efficient multi-layer feature aggregation to enhance the performance of road and vehicle segmentation from UAV imagery. Our approach integrates a spatial attention mechanism and a channel-wise attention mechanism to enable the model to selectively focus on relevant features for segmentation tasks. In conjunction with these attention mechanisms, we introduce an efficient multi-layer feature aggregation method that synthesizes and integrates multi-scale features at different levels of the network, resulting in a more robust and informative feature representation. Our proposed method is evaluated on the UAVid semantic segmentation dataset, showcasing its exceptional performance in comparison to renowned approaches such as U-Net, DeepLabv3+, and SegNet. The experimental results affirm that our approach surpasses these state-of-the-art methods in terms of segmentation accuracy.