Microwave-multiplexed qubit controller using adiabatic superconductor logic

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-06-03 DOI:10.1038/s41534-024-00849-2
Naoki Takeuchi, Taiki Yamae, Taro Yamashita, Tsuyoshi Yamamoto, Nobuyuki Yoshikawa
{"title":"Microwave-multiplexed qubit controller using adiabatic superconductor logic","authors":"Naoki Takeuchi, Taiki Yamae, Taro Yamashita, Tsuyoshi Yamamoto, Nobuyuki Yoshikawa","doi":"10.1038/s41534-024-00849-2","DOIUrl":null,"url":null,"abstract":"<p>Cryogenic qubit controllers (QCs) are the key to build large-scale superconducting quantum processors. However, developing scalable QCs is challenging because the cooling power of a dilution refrigerator is too small (~10 μW at ~10 mK) to operate conventional logic families, such as complementary metal-oxide-semiconductor logic and superconducting single-flux-quantum logic, near qubits. Here we report on a scalable QC using an ultra-low-power superconductor logic family, namely adiabatic quantum-flux-parametron (AQFP) logic. The AQFP-based QC, referred to as the AQFP-multiplexed QC (AQFP-mux QC), produces multi-tone microwave signals for qubit control with an extremely small power dissipation of 81.8 pW per qubit. Furthermore, the AQFP-mux QC adopts microwave multiplexing to reduce the number of coaxial cables for operating the entire system. As a proof of concept, we demonstrate an AQFP-mux QC chip that produces microwave signals at two output ports through microwave multiplexing and demultiplexing. Experimental results show an output power of approximately −80 dBm and on/off ratio of ~40 dB at each output port. Basic mixing operation is also demonstrated by observing sideband signals.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00849-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic qubit controllers (QCs) are the key to build large-scale superconducting quantum processors. However, developing scalable QCs is challenging because the cooling power of a dilution refrigerator is too small (~10 μW at ~10 mK) to operate conventional logic families, such as complementary metal-oxide-semiconductor logic and superconducting single-flux-quantum logic, near qubits. Here we report on a scalable QC using an ultra-low-power superconductor logic family, namely adiabatic quantum-flux-parametron (AQFP) logic. The AQFP-based QC, referred to as the AQFP-multiplexed QC (AQFP-mux QC), produces multi-tone microwave signals for qubit control with an extremely small power dissipation of 81.8 pW per qubit. Furthermore, the AQFP-mux QC adopts microwave multiplexing to reduce the number of coaxial cables for operating the entire system. As a proof of concept, we demonstrate an AQFP-mux QC chip that produces microwave signals at two output ports through microwave multiplexing and demultiplexing. Experimental results show an output power of approximately −80 dBm and on/off ratio of ~40 dB at each output port. Basic mixing operation is also demonstrated by observing sideband signals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用绝热超导体逻辑的微波多路复用量子比特控制器
低温量子比特控制器(QC)是构建大规模超导量子处理器的关键。然而,开发可扩展的 QC 具有挑战性,因为稀释冰箱的冷却功率太小(约 10 mK 时约 10 μW),无法在量子比特附近运行互补金属氧化物半导体逻辑和超导单流量子逻辑等传统逻辑系列。在此,我们报告了一种使用超低功耗超导体逻辑系列(即绝热量子通量旁瓣电子(AQFP)逻辑)的可扩展 QC。这种基于 AQFP 的 QC 被称为 AQFP 多路复用 QC(AQFP-mux QC),它能以极小的功率耗散(每个量子比特 81.8 pW)产生用于量子比特控制的多音调微波信号。此外,AQFP-mux QC 采用微波复用技术,减少了整个系统运行所需的同轴电缆数量。作为概念验证,我们演示了 AQFP-mux QC 芯片,它通过微波复用和解复用在两个输出端口产生微波信号。实验结果表明,每个输出端口的输出功率约为 -80 dBm,开/关比率约为 40 dB。通过观察边带信号,还演示了基本的混频操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon Local testability of distance-balanced quantum codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1