Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor.

IF 13 1区 生物学 Q1 CELL BIOLOGY Cell Discovery Pub Date : 2024-06-04 DOI:10.1038/s41421-024-00670-3
Sanshan Jin, Shimeng Guo, Youwei Xu, Xin Li, Canrong Wu, Xinheng He, Benxun Pan, Wenwen Xin, Heng Zhang, Wen Hu, Yuling Yin, Tianwei Zhang, Kai Wu, Qingning Yuan, H Eric Xu, Xin Xie, Yi Jiang
{"title":"Structural basis for recognition of 26RFa by the pyroglutamylated RFamide peptide receptor.","authors":"Sanshan Jin, Shimeng Guo, Youwei Xu, Xin Li, Canrong Wu, Xinheng He, Benxun Pan, Wenwen Xin, Heng Zhang, Wen Hu, Yuling Yin, Tianwei Zhang, Kai Wu, Qingning Yuan, H Eric Xu, Xin Xie, Yi Jiang","doi":"10.1038/s41421-024-00670-3","DOIUrl":null,"url":null,"abstract":"<p><p>The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the G<sub>q</sub>-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"10 1","pages":"58"},"PeriodicalIF":13.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00670-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the Gq-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
焦谷氨酰化 RFamide 肽受体识别 26RFa 的结构基础。
神经肽 26RFa 是射频酰胺肽家族的成员之一,它能激活焦谷氨酰化射频酰胺肽受体(QRFPR),这是一种 A 类 GPCR。26RFa/QRFPR 系统在能量平衡中起着关键作用,因此 QRFPR 成为治疗肥胖症、糖尿病和饮食失调症的一个有吸引力的药物靶点。然而,结构信息的缺乏阻碍了我们对 QRFPR 多肽识别和调控机制的理解,从而阻碍了药物设计工作。在这项研究中,我们测定了与 26RFa 结合的 Gq 偶联 QRFPR 的冷冻电镜结构。该结构揭示了受体胞外区与多肽 N 端独特的组装模式,阐明了 QRFPR 跨膜结合口袋对 26RFa C 端七肽的识别机制。这些发现加深了我们对射频酰胺肽识别的理解,有助于合理设计针对 QRFPR 和其他射频酰胺肽受体的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
期刊最新文献
Characterization of the landscape of the intratumoral microbiota reveals that Streptococcus anginosus increases the risk of gastric cancer initiation and progression. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Sodium oligomannate disrupts the adherence of Ribhigh bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice. The -KTS isoform of Wt1 induces the transformation of Leydig cells into granulosa-like cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1