Dunpeng Cai, Andy C Chen, Ruimei Zhou, Takashi Murashita, William P Fay, Shi-You Chen
{"title":"Enhanced Reendothelialization and Thrombosis Prevention with a New Drug-Eluting Stent.","authors":"Dunpeng Cai, Andy C Chen, Ruimei Zhou, Takashi Murashita, William P Fay, Shi-You Chen","doi":"10.1007/s10557-024-07584-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The objective of the study is to test the efficacy of cyclopentenyl cytosine (CPEC)-coated stents on blocking artery stenosis, promoting reendothelialization, and reducing thrombosis.</p><p><strong>Methods: </strong>Scanning electron microscopy was employed to observe the morphological characteristics of stents coated with a mixture of CPEC and poly(lactic-co-glycolic acid) (PLGA) copolymer. PLGA has been used in various Food and Drug Administration (FDA)-approved therapeutic devices. In vitro release of CPEC was tested to measure the dynamic drug elution. Comparison between CPEC- and everolimus-coated stents on neointimal formation and thrombosis formation was conducted after being implanted into the human internal mammary artery and grafted to the mouse aorta.</p><p><strong>Results: </strong>Optimization in stent coating resulted in uniform and consistent coating with minimal variation. In vitro drug release tests demonstrated a gradual and progressive discharge of CPEC. CPEC- or everolimus-coated stents caused much less stenosis than bare-metal stents. However, CPEC stent-implanted arteries exhibited enhanced reendothelialization compared to everolimus stents. Mechanistically, CPEC-coated stents reduced the proliferation of vascular smooth muscle cells while simultaneously promoting reendothelialization. More significantly, unlike everolimus-coated stents, CPEC-coated stents showed a significant reduction in thrombosis formation even in the absence of ongoing anticoagulant treatment.</p><p><strong>Conclusions: </strong>The study establishes CPEC-coated stent as a promising new device for cardiovascular interventions. By enhancing reendothelialization and preventing thrombosis, CPEC offers advantages over conventional approaches, including the elimination of the need for anti-clogging drugs, which pave the way for improved therapeutic outcomes and management of atherosclerosis-related medical procedures.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07584-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The objective of the study is to test the efficacy of cyclopentenyl cytosine (CPEC)-coated stents on blocking artery stenosis, promoting reendothelialization, and reducing thrombosis.
Methods: Scanning electron microscopy was employed to observe the morphological characteristics of stents coated with a mixture of CPEC and poly(lactic-co-glycolic acid) (PLGA) copolymer. PLGA has been used in various Food and Drug Administration (FDA)-approved therapeutic devices. In vitro release of CPEC was tested to measure the dynamic drug elution. Comparison between CPEC- and everolimus-coated stents on neointimal formation and thrombosis formation was conducted after being implanted into the human internal mammary artery and grafted to the mouse aorta.
Results: Optimization in stent coating resulted in uniform and consistent coating with minimal variation. In vitro drug release tests demonstrated a gradual and progressive discharge of CPEC. CPEC- or everolimus-coated stents caused much less stenosis than bare-metal stents. However, CPEC stent-implanted arteries exhibited enhanced reendothelialization compared to everolimus stents. Mechanistically, CPEC-coated stents reduced the proliferation of vascular smooth muscle cells while simultaneously promoting reendothelialization. More significantly, unlike everolimus-coated stents, CPEC-coated stents showed a significant reduction in thrombosis formation even in the absence of ongoing anticoagulant treatment.
Conclusions: The study establishes CPEC-coated stent as a promising new device for cardiovascular interventions. By enhancing reendothelialization and preventing thrombosis, CPEC offers advantages over conventional approaches, including the elimination of the need for anti-clogging drugs, which pave the way for improved therapeutic outcomes and management of atherosclerosis-related medical procedures.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.