Intraflagellar transport speed is sensitive to genetic and mechanical perturbations to flagellar beating.

IF 7.4 1区 生物学 Q1 CELL BIOLOGY Journal of Cell Biology Pub Date : 2024-09-02 Epub Date: 2024-06-03 DOI:10.1083/jcb.202401154
Sophie Gray, Cecile Fort, Richard John Wheeler
{"title":"Intraflagellar transport speed is sensitive to genetic and mechanical perturbations to flagellar beating.","authors":"Sophie Gray, Cecile Fort, Richard John Wheeler","doi":"10.1083/jcb.202401154","DOIUrl":null,"url":null,"abstract":"<p><p>Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 9","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202401154","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鞭毛内运输速度对鞭毛跳动的遗传和机械扰动很敏感。
两组运动蛋白支撑着运动纤毛/鞭毛的功能。与轴丝相关的内动力蛋白臂和外动力蛋白臂驱动相邻轴丝的微管双层滑动,使鞭毛周期性弯曲以进行跳动,而鞭毛内运输(IFT)驱动蛋白和动力蛋白则沿着轴丝双向携带IFT列车。尽管纤毛和鞭毛可以组装成运动的纤毛和鞭毛,但 IFT 列车的速度以前只在机械固定或遗传瘫痪的固定鞭毛中进行过量化。这限制了对 IFT 与鞭毛跳动之间相互作用的研究。在这里,我们在单鞭毛虫利什曼原虫中使用高频双色荧光显微镜来观察跳动鞭毛中的 IFT 运动。我们发现,鞭毛粘附在显微载玻片上是有害的,会降低IFT列车的速度,增加列车的停滞。在可自由运动的鞭毛中,IFT列车的速度与鞭毛的节拍类型关系不大;然而,通过删除形成或调节节拍所需的基因永久性地破坏鞭毛的节拍,结果显示节拍频率与IFT列车的速度成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
期刊最新文献
Epidermal maintenance of Langerhans cells relies on autophagy-regulated lipid metabolism. Structural response of microtubule and actin cytoskeletons to direct intracellular load. Securin regulates the spatiotemporal dynamics of separase. Functional genetics reveals modulators of antimicrotubule drug sensitivity. Real-time imaging reveals a role for macrophage protrusive motility in melanoma invasion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1