Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta
{"title":"Peripuberty Is a Sensitive Period for Prefrontal Parvalbumin Interneuron Activity to Impact Adult Cognitive Flexibility.","authors":"Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta","doi":"10.1159/000539584","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Developmental windows in which experiences can elicit long-lasting effects on brain circuitry and behavior are called \"sensitive periods\" and reflect a state of heightened plasticity. The classic example of a sensitive period comes from studies of sensory systems, like the visual system, where early visual experience is required for normal wiring of primary visual cortex and proper visual functioning. At a mechanistic level, loss of incoming visual input results in a decrease in activity in thalamocortical neurons representing the affected eye, resulting in an activity-dependent reduction in the representation of those inputs in the visual cortex and loss of visual perception in that eye. While associative cortical regions like the medial prefrontal cortex (mPFC) do not receive direct sensory input, recent findings demonstrate that changes in activity levels experienced by this region during defined windows in early development may also result in long-lasting changes in prefrontal cortical circuitry, network function, and behavior. For example, we recently demonstrated that decreasing the activity of mPFC parvalbumin-expressing (PV) interneurons during a period of time encompassing peripuberty (postnatal day P14) to adolescence (P50) led to a long-lasting decrease in their functional inhibition of pyramidal cells, as well as impairments in cognitive flexibility. While the effects of manipulating mPFC PV interneuron activity were selective to development, and not adulthood, the exact timing of the sensitive period for this manipulation remains unknown.</p><p><strong>Methods: </strong>To refine the sensitive period in which inhibiting mPFC PV cell activity can lead to persistent effects on prefrontal functioning, we used a chemogenetic approach to restrict our inhibition of mPFC PV activity to two distinct windows: (1) peripuberty (P14-P32) and (2) early adolescence (P33-P50). We then investigated adult behavior after P90. In parallel, we performed histological analysis of molecular markers associated with sensitive period onset and offset in visual cortex, to define the onset and offset of peak-sensitive period plasticity in the mPFC.</p><p><strong>Results: </strong>We found that inhibition of mPFC PV interneurons in peripuberty (P14-P32), but not adolescence (P33-P50), led to an impairment in set-shifting behavior in adulthood manifest as an increase in trials to reach criterion performance and errors. Consistent with a pubertal onset of sensitive period plasticity in the PFC, we found that histological markers of sensitive period onset and offset also demarcated P14 and P35, respectively. The time course of expression of these markers was similar in visual cortex.</p><p><strong>Conclusion: </strong>Both lines of research converge on the peripubertal period (P14-P32) as one of heightened sensitive period plasticity in the mPFC. Further, our direct comparison of markers of sensitive period plasticity across the prefrontal and visual cortex suggests a similar time course of expression, challenging the notion that sensitive periods occur hierarchically. Together, these findings extend our knowledge about the nature and timing of sensitive period plasticity in the developing mPFC.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539584","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Developmental windows in which experiences can elicit long-lasting effects on brain circuitry and behavior are called "sensitive periods" and reflect a state of heightened plasticity. The classic example of a sensitive period comes from studies of sensory systems, like the visual system, where early visual experience is required for normal wiring of primary visual cortex and proper visual functioning. At a mechanistic level, loss of incoming visual input results in a decrease in activity in thalamocortical neurons representing the affected eye, resulting in an activity-dependent reduction in the representation of those inputs in the visual cortex and loss of visual perception in that eye. While associative cortical regions like the medial prefrontal cortex (mPFC) do not receive direct sensory input, recent findings demonstrate that changes in activity levels experienced by this region during defined windows in early development may also result in long-lasting changes in prefrontal cortical circuitry, network function, and behavior. For example, we recently demonstrated that decreasing the activity of mPFC parvalbumin-expressing (PV) interneurons during a period of time encompassing peripuberty (postnatal day P14) to adolescence (P50) led to a long-lasting decrease in their functional inhibition of pyramidal cells, as well as impairments in cognitive flexibility. While the effects of manipulating mPFC PV interneuron activity were selective to development, and not adulthood, the exact timing of the sensitive period for this manipulation remains unknown.
Methods: To refine the sensitive period in which inhibiting mPFC PV cell activity can lead to persistent effects on prefrontal functioning, we used a chemogenetic approach to restrict our inhibition of mPFC PV activity to two distinct windows: (1) peripuberty (P14-P32) and (2) early adolescence (P33-P50). We then investigated adult behavior after P90. In parallel, we performed histological analysis of molecular markers associated with sensitive period onset and offset in visual cortex, to define the onset and offset of peak-sensitive period plasticity in the mPFC.
Results: We found that inhibition of mPFC PV interneurons in peripuberty (P14-P32), but not adolescence (P33-P50), led to an impairment in set-shifting behavior in adulthood manifest as an increase in trials to reach criterion performance and errors. Consistent with a pubertal onset of sensitive period plasticity in the PFC, we found that histological markers of sensitive period onset and offset also demarcated P14 and P35, respectively. The time course of expression of these markers was similar in visual cortex.
Conclusion: Both lines of research converge on the peripubertal period (P14-P32) as one of heightened sensitive period plasticity in the mPFC. Further, our direct comparison of markers of sensitive period plasticity across the prefrontal and visual cortex suggests a similar time course of expression, challenging the notion that sensitive periods occur hierarchically. Together, these findings extend our knowledge about the nature and timing of sensitive period plasticity in the developing mPFC.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.