Integrating computational and experimental worlds

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-06-03 DOI:10.1038/s43588-024-00649-w
Ananya Rastogi
{"title":"Integrating computational and experimental worlds","authors":"Ananya Rastogi","doi":"10.1038/s43588-024-00649-w","DOIUrl":null,"url":null,"abstract":"Dr Kelly Ruggles, associate professor at New York University Langone Health, discusses with Nature Computational Science how she uses computational approaches to gain insights into cancer, inflammation and cardiovascular disease, as well as the importance of mentorship.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 6","pages":"391-392"},"PeriodicalIF":12.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00649-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00649-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dr Kelly Ruggles, associate professor at New York University Langone Health, discusses with Nature Computational Science how she uses computational approaches to gain insights into cancer, inflammation and cardiovascular disease, as well as the importance of mentorship.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将计算和实验世界融为一体。
纽约大学朗贡卫生学院副教授凯利-鲁格尔斯博士与《自然-计算科学》杂志讨论了她如何利用计算方法深入了解癌症、炎症和心血管疾病,以及导师的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Collective deliberation driven by AI. Harnessing deep learning to build optimized ligands. MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Enhancing protein stability prediction with geometric learning and pre-training strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1