Jun Wei Ng, Tong Mei Teh, Weingarten Melanie, Md. Mahabubur Rahman Talukder
{"title":"Integrating bead milling and alkaline solubilization for enhanced protein recovery from microalgae: A comprehensive approach","authors":"Jun Wei Ng, Tong Mei Teh, Weingarten Melanie, Md. Mahabubur Rahman Talukder","doi":"10.1016/j.fufo.2024.100385","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae, <em>Chlorella vulgaris</em> exhibits substantial potential as a sustainable food ingredient, but its robust cell wall and limited protein solubility hinder industrial scale protein recovery. A comprehensive solution was devised, integrating dry bead milling and alkaline solubilization. In this method, cells were initially disrupted with bead milling followed by alkali (NaOH) treatment. Without bead milling, protein extraction yield was very low (5.0 % with water, 16.8 % with 0.1 M NaOH) at a biomass loading of 20 g/L. However, the integrated approach significantly improved these results, achieving a maximum protein extraction yield of about 47.3 % at a biomass loading of 100 g/L. The optimized conditions for both dry bead milling (frequency 26 Hz, duration 1.0 h) and alkaline solubilization (biomass weight to NaOH molar ratio 200–250 (g/M), 37 °C, mixing time 1.0 h) played a pivotal role in realizing these improved results. This integrated approach effectively addresses the challenges and holds industrial relevance, offering a more efficient way to extract microalgal protein.</p></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"9 ","pages":"Article 100385"},"PeriodicalIF":7.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666833524000911/pdfft?md5=1b9718fabf3a1e0841f61d9d53c109a1&pid=1-s2.0-S2666833524000911-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524000911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae, Chlorella vulgaris exhibits substantial potential as a sustainable food ingredient, but its robust cell wall and limited protein solubility hinder industrial scale protein recovery. A comprehensive solution was devised, integrating dry bead milling and alkaline solubilization. In this method, cells were initially disrupted with bead milling followed by alkali (NaOH) treatment. Without bead milling, protein extraction yield was very low (5.0 % with water, 16.8 % with 0.1 M NaOH) at a biomass loading of 20 g/L. However, the integrated approach significantly improved these results, achieving a maximum protein extraction yield of about 47.3 % at a biomass loading of 100 g/L. The optimized conditions for both dry bead milling (frequency 26 Hz, duration 1.0 h) and alkaline solubilization (biomass weight to NaOH molar ratio 200–250 (g/M), 37 °C, mixing time 1.0 h) played a pivotal role in realizing these improved results. This integrated approach effectively addresses the challenges and holds industrial relevance, offering a more efficient way to extract microalgal protein.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP