Cross-species molecular docking method to support predictions of species susceptibility to chemical effects

IF 3.1 Q2 TOXICOLOGY Computational Toxicology Pub Date : 2024-06-01 DOI:10.1016/j.comtox.2024.100319
Peter G. Schumann , Daniel T. Chang , Sally A. Mayasich , Sara M.F. Vliet , Terry N. Brown , Carlie A. LaLone
{"title":"Cross-species molecular docking method to support predictions of species susceptibility to chemical effects","authors":"Peter G. Schumann ,&nbsp;Daniel T. Chang ,&nbsp;Sally A. Mayasich ,&nbsp;Sara M.F. Vliet ,&nbsp;Terry N. Brown ,&nbsp;Carlie A. LaLone","doi":"10.1016/j.comtox.2024.100319","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of protein structural prediction tools, exemplified by AlphaFold and Iterative Threading ASSEmbly Refinement, has enabled the prediction of protein structures across species based on available protein sequence and structural data. In this study, we introduce an innovative molecular docking method that capitalizes on this wealth of structural data to enhance predictions of chemical susceptibility across species. We demonstrated this method using the androgen receptor as a pertinent modulator of endocrine function. By using protein structures, this method contextualizes species susceptibility within a functional framework and helps to integrate molecular docking into the repertoire of New Approach Methodologies (NAMs) that support the Next-Generation Risk Assessment (NGRA) paradigm through the novel integration of various open-source tools.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of protein structural prediction tools, exemplified by AlphaFold and Iterative Threading ASSEmbly Refinement, has enabled the prediction of protein structures across species based on available protein sequence and structural data. In this study, we introduce an innovative molecular docking method that capitalizes on this wealth of structural data to enhance predictions of chemical susceptibility across species. We demonstrated this method using the androgen receptor as a pertinent modulator of endocrine function. By using protein structures, this method contextualizes species susceptibility within a functional framework and helps to integrate molecular docking into the repertoire of New Approach Methodologies (NAMs) that support the Next-Generation Risk Assessment (NGRA) paradigm through the novel integration of various open-source tools.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持预测物种对化学效应敏感性的跨物种分子对接方法
以 AlphaFold 和 Iterative Threading ASSEmbly Refinement 为代表的蛋白质结构预测工具的发展,使得基于现有蛋白质序列和结构数据的跨物种蛋白质结构预测成为可能。在本研究中,我们介绍了一种创新的分子对接方法,该方法利用丰富的结构数据加强了对不同物种化学敏感性的预测。我们将雄激素受体作为内分泌功能的相关调节剂来演示这种方法。通过使用蛋白质结构,该方法将物种易感性与功能框架联系起来,并通过对各种开源工具的新颖整合,帮助将分子对接纳入支持下一代风险评估(NGRA)范例的新方法(NAM)库中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
期刊最新文献
Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework Species specific kinetics of imidacloprid and carbendazim in mouse and rat and consequences for biomonitoring In silico analysis of the melamine structural analogues interaction with calcium-sensing receptor: A potential for nephrotoxicity Modeling chemical bioaccumulation in snakes, part 1: Model development Modeling chemical bioaccumulation in snakes, part 2: Model testing and high-throughput simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1