{"title":"A reciprocal integral identity of coupled Poisson and Laplace equations in two arbitrary domains sharing a common boundary","authors":"Sai Sashankh Rao, Harris Wong","doi":"10.1016/j.rinam.2024.100464","DOIUrl":null,"url":null,"abstract":"<div><p>In solving the coupled vapor and liquid unidirectional flows in micro heat pipes, we discovered numerically an integral identity. After asymptotic and polynomial expansions, the coupled flows yield two reciprocal systems of equations. In system A, a vapor velocity <span><math><msub><mi>U</mi><mi>A</mi></msub></math></span> obeys the Poisson equation and drives, through an interfacial boundary condition, a liquid velocity <span><math><msub><mi>W</mi><mi>A</mi></msub></math></span> that satisfies the Laplace equation. In reciprocal system B, a liquid velocity <span><math><msub><mi>W</mi><mi>B</mi></msub></math></span> obeys the Poisson equation and drives, through another interfacial boundary condition, a vapor velocity <span><math><msub><mi>U</mi><mi>B</mi></msub></math></span> that satisfies the Laplace equation. We found that the vapor volume flow rate of <span><math><msub><mi>U</mi><mi>B</mi></msub></math></span> is numerically equal to the liquid volume flow rate of <span><math><msub><mi>W</mi><mi>A</mi></msub></math></span> for seven different pipe shapes. Here, a general proof is presented for the integral identity, and some interesting implications of this identity are discussed.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100464"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000347/pdfft?md5=15ef6456818b39be2398537f95248bf5&pid=1-s2.0-S2590037424000347-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In solving the coupled vapor and liquid unidirectional flows in micro heat pipes, we discovered numerically an integral identity. After asymptotic and polynomial expansions, the coupled flows yield two reciprocal systems of equations. In system A, a vapor velocity obeys the Poisson equation and drives, through an interfacial boundary condition, a liquid velocity that satisfies the Laplace equation. In reciprocal system B, a liquid velocity obeys the Poisson equation and drives, through another interfacial boundary condition, a vapor velocity that satisfies the Laplace equation. We found that the vapor volume flow rate of is numerically equal to the liquid volume flow rate of for seven different pipe shapes. Here, a general proof is presented for the integral identity, and some interesting implications of this identity are discussed.
在求解微型热管中的蒸汽和液体单向耦合流时,我们在数值上发现了一个积分特性。经过渐近和多项式展开后,耦合流动产生了两个互为倒数的方程组。在系统 A 中,蒸汽速度 UA 遵循泊松方程,并通过界面边界条件驱动满足拉普拉斯方程的液体速度 WA。在倒易系统 B 中,液体速度 WB 遵循泊松方程,并通过另一个界面边界条件驱动满足拉普拉斯方程的蒸汽速度 UB。我们发现,对于七种不同形状的管道,UB 的蒸汽体积流量在数值上等于 WA 的液体体积流量。在此,我们提出了积分特性的一般证明,并讨论了这一特性的一些有趣含义。