{"title":"Stock return predictability using economic narrative: Evidence from energy sectors","authors":"Tian Ma , Ganghui Li , Huajing Zhang","doi":"10.1016/j.jcomm.2024.100418","DOIUrl":null,"url":null,"abstract":"<div><p>This paper applies the Narrative-based Energy General Index (NEG) to forecast stock returns in the energy industry. The index is constructed using natural language processing (NLP) techniques applied to news topics from <em>The Wall Street Journal</em>. The results indicate that NEG outperforms in predicting future returns of the energy industry in both in-sample and out-of-sample, and the predictive power surpasses that of other macroeconomic variables. The asset allocation exercise demonstrates the substantial economic value of NEG. Furthermore, we document that NEG not only exhibits superior predictive power for energy sector returns but also provides valuable insights for the whole stock market.</p></div>","PeriodicalId":45111,"journal":{"name":"Journal of Commodity Markets","volume":"35 ","pages":"Article 100418"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commodity Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405851324000370","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper applies the Narrative-based Energy General Index (NEG) to forecast stock returns in the energy industry. The index is constructed using natural language processing (NLP) techniques applied to news topics from The Wall Street Journal. The results indicate that NEG outperforms in predicting future returns of the energy industry in both in-sample and out-of-sample, and the predictive power surpasses that of other macroeconomic variables. The asset allocation exercise demonstrates the substantial economic value of NEG. Furthermore, we document that NEG not only exhibits superior predictive power for energy sector returns but also provides valuable insights for the whole stock market.
期刊介绍:
The purpose of the journal is also to stimulate international dialog among academics, industry participants, traders, investors, and policymakers with mutual interests in commodity markets. The mandate for the journal is to present ongoing work within commodity economics and finance. Topics can be related to financialization of commodity markets; pricing, hedging, and risk analysis of commodity derivatives; risk premia in commodity markets; real option analysis for commodity project investment and production; portfolio allocation including commodities; forecasting in commodity markets; corporate finance for commodity-exposed corporations; econometric/statistical analysis of commodity markets; organization of commodity markets; regulation of commodity markets; local and global commodity trading; and commodity supply chains. Commodity markets in this context are energy markets (including renewables), metal markets, mineral markets, agricultural markets, livestock and fish markets, markets for weather derivatives, emission markets, shipping markets, water, and related markets. This interdisciplinary and trans-disciplinary journal will cover all commodity markets and is thus relevant for a broad audience. Commodity markets are not only of academic interest but also highly relevant for many practitioners, including asset managers, industrial managers, investment bankers, risk managers, and also policymakers in governments, central banks, and supranational institutions.