Method for Network-Anomaly Detection and Failure-Scale Estimation

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Communications Express Pub Date : 2024-04-08 DOI:10.23919/comex.2024XBL0028
Naoya Ogawa;Ryoichi Kawahara
{"title":"Method for Network-Anomaly Detection and Failure-Scale Estimation","authors":"Naoya Ogawa;Ryoichi Kawahara","doi":"10.23919/comex.2024XBL0028","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 6","pages":"206-209"},"PeriodicalIF":0.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494939","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494939/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络异常现象检测和故障规模估算方法
在本研究中,我们提出了一种利用自动编码器(一种神经网络)进行网络异常现象检测和故障规模估计的新方法。所提议的方法首先将网络分为若干组。随后,使用自动编码器检测每个组间流量的异常情况,并根据检测到异常情况的自动编码器数量估算故障规模。我们通过使用网络模拟器 Mininet 构建的虚拟网络,对通信过程中的异常检测进行了实验研究,结果证实所提出的方法可以成功检测异常并估算故障规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
期刊最新文献
Special Cluster in Conjunction with IEICE General Conference 2024 Intelligent Reflecting Surface Effect by Switching ±45° Incident Polarization in Outdoor Environment Compact and Wideband Rectifier Using a Multi-Stage Type Matching Circuit for Microwave Wireless Power Transmission System Anomaly Detection Support for Crowdworkers by Providing Anomaly Scores Reducing Temperature Rise in Metal Meshes Exposed to Incident Electromagnetic Waves through Regular Polygonal Unit Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1