Synergizing Chemical Structures and Bioassay Descriptions for Enhanced Molecular Property Prediction in Drug Discovery

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-06-05 DOI:10.1021/acs.jcim.4c00765
Maximilian G. Schuh, Davide Boldini* and Stephan A. Sieber*, 
{"title":"Synergizing Chemical Structures and Bioassay Descriptions for Enhanced Molecular Property Prediction in Drug Discovery","authors":"Maximilian G. Schuh,&nbsp;Davide Boldini* and Stephan A. Sieber*,&nbsp;","doi":"10.1021/acs.jcim.4c00765","DOIUrl":null,"url":null,"abstract":"<p >The precise prediction of molecular properties can greatly accelerate the development of new drugs. However, <i>in silico</i> molecular property prediction approaches have been limited so far to assays for which large amounts of data are available. In this study, we develop a new computational approach leveraging both the textual description of the assay of interest and the chemical structure of target compounds. By combining these two sources of information via self-supervised learning, our tool can provide accurate predictions for assays where no measurements are available. Remarkably, our approach achieves state-of-the-art performance on the FS-Mol benchmark for zero-shot prediction, outperforming a wide variety of deep learning approaches. Additionally, we demonstrate how our tool can be used for tailoring screening libraries for the assay of interest, showing promising performance in a retrospective case study on a high-throughput screening campaign. By accelerating the early identification of active molecules in drug discovery and development, this method has the potential to streamline the identification of novel therapeutics.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00765","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The precise prediction of molecular properties can greatly accelerate the development of new drugs. However, in silico molecular property prediction approaches have been limited so far to assays for which large amounts of data are available. In this study, we develop a new computational approach leveraging both the textual description of the assay of interest and the chemical structure of target compounds. By combining these two sources of information via self-supervised learning, our tool can provide accurate predictions for assays where no measurements are available. Remarkably, our approach achieves state-of-the-art performance on the FS-Mol benchmark for zero-shot prediction, outperforming a wide variety of deep learning approaches. Additionally, we demonstrate how our tool can be used for tailoring screening libraries for the assay of interest, showing promising performance in a retrospective case study on a high-throughput screening campaign. By accelerating the early identification of active molecules in drug discovery and development, this method has the potential to streamline the identification of novel therapeutics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同化学结构和生物测定描述,增强药物发现中的分子特性预测。
对分子特性的精确预测可以大大加快新药的研发。然而,迄今为止硅学分子性质预测方法仅限于可获得大量数据的检测方法。在本研究中,我们开发了一种新的计算方法,同时利用相关检测的文本描述和目标化合物的化学结构。通过自监督学习将这两种信息源结合起来,我们的工具可以为没有测量数据的检测提供准确的预测。值得注意的是,我们的方法在零次预测的 FS-Mol 基准上取得了最先进的性能,超过了各种深度学习方法。此外,我们还展示了如何利用我们的工具为感兴趣的检测量身定制筛选库,并在一项高通量筛选活动的回顾性案例研究中展示了良好的性能。通过加速药物发现和开发过程中活性分子的早期鉴定,这种方法有望简化新型疗法的鉴定过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Combatting Antibiotic-Resistant Staphylococcus aureus: Discovery of TST1N-224, a Potent Inhibitor Targeting Response Regulator VraRC, through Pharmacophore-Based Screening and Molecular Characterizations. Charge Relaying within a Phospho-Motif Rescue Binding Competency of a Disordered Transcription Factor. Fully Flexible Molecular Alignment Enables Accurate Ligand Structure Modeling. Integrating Prior Chemical Knowledge into the Graph Transformer Network to Predict the Stability Constants of Chelating Agents and Metal Ions. Prediction of Protein Allosteric Sites with Transfer Entropy and Spatial Neighbor-Based Evolutionary Information Learned by an Ensemble Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1