{"title":"Reprogramming the future: Capitalizing on <i>in vitro</i> embryo culture by advancing stem cell technologies in the fight against rare genetic disorders.","authors":"Lisha Li, Taiwei Zhang, Zhaozhao Hua, Jing Wang, Hongmei Sun, Qian Chen, Yiyuan Zhou, Ling Wang","doi":"10.5582/irdr.2023.01074","DOIUrl":null,"url":null,"abstract":"<p><p>Capitalizing on breakthroughs in reproductive genetics, the utilization of <i>in vitro</i> embryo culture and stem cell technologies heralds a transformative era in addressing global challenges posed by rare genetic diseases. These cutting-edge practices illuminate the intricacies of early human development, elucidate the mechanisms behind rare diseases, and guide the development of potential therapies. Balancing this remarkable innovation with necessary ethical considerations, these technologies have the potential to revolutionize the trajectory of rare genetic disorders, transforming the landscape of diagnosis, treatment, and genetic counseling while offering renewed hope for affected individuals and families worldwide.</p>","PeriodicalId":14420,"journal":{"name":"Intractable & rare diseases research","volume":"13 2","pages":"117-120"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intractable & rare diseases research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5582/irdr.2023.01074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Capitalizing on breakthroughs in reproductive genetics, the utilization of in vitro embryo culture and stem cell technologies heralds a transformative era in addressing global challenges posed by rare genetic diseases. These cutting-edge practices illuminate the intricacies of early human development, elucidate the mechanisms behind rare diseases, and guide the development of potential therapies. Balancing this remarkable innovation with necessary ethical considerations, these technologies have the potential to revolutionize the trajectory of rare genetic disorders, transforming the landscape of diagnosis, treatment, and genetic counseling while offering renewed hope for affected individuals and families worldwide.