Visual Recalibration and Gating Enhancement Network for Radiology Report Generation.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-06-01 Epub Date: 2024-06-05 DOI:10.1089/cmb.2024.0514
Xiaodi Hou, Guoming Sang, Zhi Liu, Xiaobo Li, Yijia Zhang
{"title":"Visual Recalibration and Gating Enhancement Network for Radiology Report Generation.","authors":"Xiaodi Hou, Guoming Sang, Zhi Liu, Xiaobo Li, Yijia Zhang","doi":"10.1089/cmb.2024.0514","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic radiology medical report generation is a necessary development of artificial intelligence technology in the health care. This technology serves to aid doctors in producing comprehensive diagnostic reports, alleviating the burdensome workloads of medical professionals. However, there are some challenges in generating radiological reports: (1) visual and textual data biases and (2) long-distance dependency problem. To tackle these issues, we design a visual recalibration and gating enhancement network (VRGE), which composes of the visual recalibration module and the gating enhancement module (gating enhancement module, GEM). Specifically, the visual recalibration module enhances the recognition of abnormal features in lesion areas of medical images. The GEM dynamically adjusts the contextual information in the report by introducing gating mechanisms, focusing on capturing professional medical terminology in medical text reports. We have conducted sufficient experiments on the public datasets of IU X-Ray to illustrate that the VRGE outperforms existing models.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"486-497"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0514","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic radiology medical report generation is a necessary development of artificial intelligence technology in the health care. This technology serves to aid doctors in producing comprehensive diagnostic reports, alleviating the burdensome workloads of medical professionals. However, there are some challenges in generating radiological reports: (1) visual and textual data biases and (2) long-distance dependency problem. To tackle these issues, we design a visual recalibration and gating enhancement network (VRGE), which composes of the visual recalibration module and the gating enhancement module (gating enhancement module, GEM). Specifically, the visual recalibration module enhances the recognition of abnormal features in lesion areas of medical images. The GEM dynamically adjusts the contextual information in the report by introducing gating mechanisms, focusing on capturing professional medical terminology in medical text reports. We have conducted sufficient experiments on the public datasets of IU X-Ray to illustrate that the VRGE outperforms existing models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生成放射报告的视觉重新校准和选通增强网络。
自动生成放射科医疗报告是人工智能技术在医疗领域的必要发展。这项技术可以帮助医生生成全面的诊断报告,减轻医疗专业人员繁重的工作量。然而,在生成放射医学报告方面存在一些挑战:(1) 视觉和文本数据偏差;(2) 远距离依赖问题。为了解决这些问题,我们设计了一个视觉再校准和选通增强网络(VRGE),它由视觉再校准模块和选通增强模块(选通增强模块,GEM)组成。具体来说,视觉重新校准模块可增强对医学图像病变区域异常特征的识别。GEM 通过引入门控机制,动态调整报告中的上下文信息,重点捕捉医疗文本报告中的专业医疗术语。我们在 IU X-Ray 的公共数据集上进行了充分的实验,证明 VRGE 的性能优于现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction. Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1