Deformable microlaser force sensing.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy Light, science & applications Pub Date : 2024-06-05 DOI:10.1038/s41377-024-01471-9
Eleni Dalaka, Joseph S Hill, Jonathan H H Booth, Anna Popczyk, Stefan R Pulver, Malte C Gather, Marcel Schubert
{"title":"Deformable microlaser force sensing.","authors":"Eleni Dalaka, Joseph S Hill, Jonathan H H Booth, Anna Popczyk, Stefan R Pulver, Malte C Gather, Marcel Schubert","doi":"10.1038/s41377-024-01471-9","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces are key regulators of cellular behavior and function, affecting many fundamental biological processes such as cell migration, embryogenesis, immunological responses, and pathological states. Specialized force sensors and imaging techniques have been developed to quantify these otherwise invisible forces in single cells and in vivo. However, current techniques rely heavily on high-resolution microscopy and do not allow interrogation of optically dense tissue, reducing their application to 2D cell cultures and highly transparent biological tissue. Here, we introduce DEFORM, deformable microlaser force sensing, a spectroscopic technique that detects sub-nanonewton forces with unprecedented spatio-temporal resolution. DEFORM is based on the spectral analysis of laser emission from dye-doped oil microdroplets and uses the force-induced lifting of laser mode degeneracy in these droplets to detect nanometer deformations. Following validation by atomic force microscopy and development of a model that links changes in laser spectrum to applied force, DEFORM is used to measure forces in 3D and at depths of hundreds of microns within tumor spheroids and late-stage Drosophila larva. We furthermore show continuous force sensing with single-cell spatial and millisecond temporal resolution, thus paving the way for non-invasive studies of biomechanical forces in advanced stages of embryogenesis, tissue remodeling, and tumor invasion.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"129"},"PeriodicalIF":19.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01471-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical forces are key regulators of cellular behavior and function, affecting many fundamental biological processes such as cell migration, embryogenesis, immunological responses, and pathological states. Specialized force sensors and imaging techniques have been developed to quantify these otherwise invisible forces in single cells and in vivo. However, current techniques rely heavily on high-resolution microscopy and do not allow interrogation of optically dense tissue, reducing their application to 2D cell cultures and highly transparent biological tissue. Here, we introduce DEFORM, deformable microlaser force sensing, a spectroscopic technique that detects sub-nanonewton forces with unprecedented spatio-temporal resolution. DEFORM is based on the spectral analysis of laser emission from dye-doped oil microdroplets and uses the force-induced lifting of laser mode degeneracy in these droplets to detect nanometer deformations. Following validation by atomic force microscopy and development of a model that links changes in laser spectrum to applied force, DEFORM is used to measure forces in 3D and at depths of hundreds of microns within tumor spheroids and late-stage Drosophila larva. We furthermore show continuous force sensing with single-cell spatial and millisecond temporal resolution, thus paving the way for non-invasive studies of biomechanical forces in advanced stages of embryogenesis, tissue remodeling, and tumor invasion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变形微激光力传感。
机械力是细胞行为和功能的关键调节器,影响着许多基本的生物过程,如细胞迁移、胚胎发育、免疫反应和病理状态。目前已开发出专门的力传感器和成像技术,用于量化单细胞和体内这些原本不可见的力。然而,目前的技术严重依赖于高分辨率显微镜,无法对光学致密组织进行检测,从而降低了它们在二维细胞培养和高透明度生物组织中的应用。在这里,我们介绍了 DEFORM(可变形微激光力传感),这是一种能以前所未有的时空分辨率检测亚纳牛顿力的光谱技术。DEFORM 基于对掺杂染料的油微滴激光发射的光谱分析,并利用这些微滴中激光模式变性的力诱导提升来检测纳米级变形。经过原子力显微镜的验证,并建立了一个将激光光谱变化与作用力联系起来的模型后,DEFORM 被用于测量肿瘤球体和晚期果蝇幼虫内部数百微米深度的三维力。此外,我们还展示了具有单细胞空间分辨率和毫秒时间分辨率的连续力传感,从而为在胚胎发育、组织重塑和肿瘤侵袭的晚期阶段对生物力学力进行非侵入式研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
期刊最新文献
Research progress on aero-optical effects of hypersonic optical window with film cooling. Highly-efficient (>70%) and Wide-spectral (400-1700 nm) sub-micron-thick InGaAs photodiodes for future high-resolution image sensors. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1