Improving the enzymatic activity and stability of N-carbamoyl hydrolase using deep learning approach.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2024-06-04 DOI:10.1186/s12934-024-02439-5
Fa Zhang, Muhammad Naeem, Bo Yu, Feixia Liu, Jiansong Ju
{"title":"Improving the enzymatic activity and stability of N-carbamoyl hydrolase using deep learning approach.","authors":"Fa Zhang, Muhammad Naeem, Bo Yu, Feixia Liu, Jiansong Ju","doi":"10.1186/s12934-024-02439-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Optically active D-amino acids are widely used as intermediates in the synthesis of antibiotics, insecticides, and peptide hormones. Currently, the two-enzyme cascade reaction is the most efficient way to produce D-amino acids using enzymes DHdt and DCase, but DCase is susceptible to heat inactivation. Here, to enhance the enzymatic activity and thermal stability of DCase, a rational design software \"Feitian\" was developed based on k<sub>cat</sub> prediction using the deep learning approach.</p><p><strong>Results: </strong>According to empirical design and prediction of \"Feitian\" software, six single-point mutants with high k<sub>cat</sub> value were selected and successfully constructed by site-directed mutagenesis. Out of six, three mutants (Q4C, T212S, and A302C) showed higher enzymatic activity than the wild-type. Furthermore, the combined triple-point mutant DCase-M3 (Q4C/T212S/A302C) exhibited a 4.25-fold increase in activity (29.77 ± 4.52 U) and a 2.25-fold increase in thermal stability as compared to the wild-type, respectively. Through the whole-cell reaction, the high titer of D-HPG (2.57 ± 0.43 mM) was produced by the mutant Q4C/T212S/A302C, which was about 2.04-fold of the wild-type. Molecular dynamics simulation results showed that DCase-M3 significantly enhances the rigidity of the catalytic site and thus increases the activity of DCase-M3.</p><p><strong>Conclusions: </strong>In this study, an efficient rational design software \"Feitian\" was successfully developed with a prediction accuracy of about 50% in enzymatic activity. A triple-point mutant DCase-M3 (Q4C/T212S/A302C) with enhanced enzymatic activity and thermostability was successfully obtained, which could be applied to the development of a fully enzymatic process for the industrial production of D-HPG.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02439-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Optically active D-amino acids are widely used as intermediates in the synthesis of antibiotics, insecticides, and peptide hormones. Currently, the two-enzyme cascade reaction is the most efficient way to produce D-amino acids using enzymes DHdt and DCase, but DCase is susceptible to heat inactivation. Here, to enhance the enzymatic activity and thermal stability of DCase, a rational design software "Feitian" was developed based on kcat prediction using the deep learning approach.

Results: According to empirical design and prediction of "Feitian" software, six single-point mutants with high kcat value were selected and successfully constructed by site-directed mutagenesis. Out of six, three mutants (Q4C, T212S, and A302C) showed higher enzymatic activity than the wild-type. Furthermore, the combined triple-point mutant DCase-M3 (Q4C/T212S/A302C) exhibited a 4.25-fold increase in activity (29.77 ± 4.52 U) and a 2.25-fold increase in thermal stability as compared to the wild-type, respectively. Through the whole-cell reaction, the high titer of D-HPG (2.57 ± 0.43 mM) was produced by the mutant Q4C/T212S/A302C, which was about 2.04-fold of the wild-type. Molecular dynamics simulation results showed that DCase-M3 significantly enhances the rigidity of the catalytic site and thus increases the activity of DCase-M3.

Conclusions: In this study, an efficient rational design software "Feitian" was successfully developed with a prediction accuracy of about 50% in enzymatic activity. A triple-point mutant DCase-M3 (Q4C/T212S/A302C) with enhanced enzymatic activity and thermostability was successfully obtained, which could be applied to the development of a fully enzymatic process for the industrial production of D-HPG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习方法提高 N-氨基甲酰水解酶的酶活性和稳定性。
背景:光学活性 D-氨基酸被广泛用作合成抗生素、杀虫剂和肽类激素的中间体。目前,利用酶 DHdt 和 DCase 进行双酶级联反应是生产 D-氨基酸最有效的方法,但 DCase 易受热失活。在此,为了提高DCase的酶活性和热稳定性,利用深度学习方法开发了基于kcat预测的合理设计软件 "Feitian":结果:根据 "Feitian "软件的经验设计和预测,通过定点突变筛选并成功构建了6个高kcat值的单点突变体。在这六个突变体中,有三个突变体(Q4C、T212S 和 A302C)的酶活性高于野生型。此外,三点突变体 DCase-M3(Q4C/T212S/A302C)的活性(29.77 ± 4.52 U)和热稳定性分别比野生型提高了 4.25 倍和 2.25 倍。通过全细胞反应,突变体Q4C/T212S/A302C产生了高滴度的D-HPG(2.57 ± 0.43 mM),约为野生型的2.04倍。分子动力学模拟结果表明,DCase-M3 显著增强了催化位点的刚性,从而提高了 DCase-M3 的活性:本研究成功开发了一种高效的合理设计软件 "Feitian",其对酶活性的预测准确率约为 50%。成功获得了酶活性和热稳定性更强的三点突变体 DCase-M3(Q4C/T212S/A302C),该突变体可用于开发工业化生产 D-HPG 的全酶工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
De novo biosynthesis of β-Arbutin in Komagataella phaffii based on metabolic engineering strategies. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Novel nanoconjugates of metal oxides and natural red pigment from the endophyte Monascus ruber using solid-state fermentation. Continuous production of chitooligosaccharides in a column reactor by the PUF-immobilized whole cell enzymes of Mucor circinelloides IBT-83. Correction: Enhancement of vitamin B6 production driven by omics analysis combined with fermentation optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1