New liver window width in detecting hepatocellular carcinoma on dynamic contrast-enhanced computed tomography with deep learning reconstruction.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-09-01 Epub Date: 2024-06-05 DOI:10.1007/s12194-024-00817-7
Naomasa Okimoto, Koichiro Yasaka, Shinichi Cho, Saori Koshino, Jun Kanzawa, Yusuke Asari, Nana Fujita, Takatoshi Kubo, Yuichi Suzuki, Osamu Abe
{"title":"New liver window width in detecting hepatocellular carcinoma on dynamic contrast-enhanced computed tomography with deep learning reconstruction.","authors":"Naomasa Okimoto, Koichiro Yasaka, Shinichi Cho, Saori Koshino, Jun Kanzawa, Yusuke Asari, Nana Fujita, Takatoshi Kubo, Yuichi Suzuki, Osamu Abe","doi":"10.1007/s12194-024-00817-7","DOIUrl":null,"url":null,"abstract":"<p><p>Changing a window width (WW) alters appearance of noise and contrast of CT images. The aim of this study was to investigate the impact of adjusted WW for deep learning reconstruction (DLR) in detecting hepatocellular carcinomas (HCCs) on CT with DLR. This retrospective study included thirty-five patients who underwent abdominal dynamic contrast-enhanced CT. DLR was used to reconstruct arterial, portal, and delayed phase images. The investigation of the optimal WW involved two blinded readers. Then, five other blinded readers independently read the image sets for detection of HCCs and evaluation of image quality with optimal or conventional liver WW. The optimal WW for detection of HCC was 119 (rounded to 120 in the subsequent analyses) Hounsfield unit (HU), which was the average of adjusted WW in the arterial, portal, and delayed phases. The average figures of merit for the readers for the jackknife alternative free-response receiver operating characteristic analysis to detect HCC were 0.809 (reader 1/2/3/4/5, 0.765/0.798/0.892/0.764/0.827) in the optimal WW (120 HU) and 0.765 (reader 1/2/3/4/5, 0.707/0.769/0.838/0.720/0.791) in the conventional WW (150 HU), and statistically significant difference was observed between them (p < 0.001). Image quality in the optimal WW was superior to those in the conventional WW, and significant difference was seen for some readers (p < 0.041). The optimal WW for detection of HCC was narrower than conventional WW on dynamic contrast-enhanced CT with DLR. Compared with the conventional liver WW, optimal liver WW significantly improved detection performance of HCC.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00817-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Changing a window width (WW) alters appearance of noise and contrast of CT images. The aim of this study was to investigate the impact of adjusted WW for deep learning reconstruction (DLR) in detecting hepatocellular carcinomas (HCCs) on CT with DLR. This retrospective study included thirty-five patients who underwent abdominal dynamic contrast-enhanced CT. DLR was used to reconstruct arterial, portal, and delayed phase images. The investigation of the optimal WW involved two blinded readers. Then, five other blinded readers independently read the image sets for detection of HCCs and evaluation of image quality with optimal or conventional liver WW. The optimal WW for detection of HCC was 119 (rounded to 120 in the subsequent analyses) Hounsfield unit (HU), which was the average of adjusted WW in the arterial, portal, and delayed phases. The average figures of merit for the readers for the jackknife alternative free-response receiver operating characteristic analysis to detect HCC were 0.809 (reader 1/2/3/4/5, 0.765/0.798/0.892/0.764/0.827) in the optimal WW (120 HU) and 0.765 (reader 1/2/3/4/5, 0.707/0.769/0.838/0.720/0.791) in the conventional WW (150 HU), and statistically significant difference was observed between them (p < 0.001). Image quality in the optimal WW was superior to those in the conventional WW, and significant difference was seen for some readers (p < 0.041). The optimal WW for detection of HCC was narrower than conventional WW on dynamic contrast-enhanced CT with DLR. Compared with the conventional liver WW, optimal liver WW significantly improved detection performance of HCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习重建技术在动态对比增强计算机断层扫描中检测肝细胞癌的新肝窗宽度
改变窗口宽度(WW)会改变 CT 图像的噪声和对比度。本研究旨在探讨调整深度学习重建(DLR)的窗宽对通过 DLR CT 检测肝细胞癌(HCC)的影响。这项回顾性研究纳入了 35 名接受腹部动态对比增强 CT 的患者。DLR 用于重建动脉、肝门和延迟相图像。对最佳 WW 的研究涉及两名盲人读者。然后,由另外五名盲读者独立阅读图像集,以检测 HCC 并评估最佳或传统肝脏 WW 的图像质量。检测 HCC 的最佳 WW 值为 119(在随后的分析中四舍五入为 120)Hounsfield 单位(HU),这是动脉期、门脉期和延迟期调整后 WW 值的平均值。在检测 HCC 的杰克刀替代自由响应接收器操作特征分析中,最佳 WW(120 HU)和常规 WW(150 HU)的读者平均值分别为 0.809(读者 1/2/3/4/5,0.765/0.798/0.892/0.764/0.827)和 0.765(读者 1/2/3/4/5,0.707/0.769/0.838/0.720/0.791)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Optimum delineation of skin structure for dose calculation with the linear Boltzmann transport equation algorithm in radiotherapy treatment planning. Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography. Estimation of the lateral variation of photon beam energy spectra using the percentage depth dose reconstruction method. Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach. Correction: Recommendation for reducing the crystalline lens exposure dose by reducing imaging field width in cone-beam computed tomography for image-guided radiation therapy: an anthropomorphic phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1