Hailiang Song , Tian Dong , Wei Wang , Boyun Jiang , Xiaoyu Yan , Chenfan Geng , Song Bai , Shijian Xu , Hongxia Hu
{"title":"Cost-effective genomic prediction of critical economic traits in sturgeons through low-coverage sequencing","authors":"Hailiang Song , Tian Dong , Wei Wang , Boyun Jiang , Xiaoyu Yan , Chenfan Geng , Song Bai , Shijian Xu , Hongxia Hu","doi":"10.1016/j.ygeno.2024.110874","DOIUrl":null,"url":null,"abstract":"<div><p>Low-coverage whole-genome sequencing (LCS) offers a cost-effective alternative for sturgeon breeding, especially given the lack of SNP chips and the high costs associated with whole-genome sequencing. In this study, the efficiency of LCS for genotype imputation and genomic prediction was assessed in 643 sequenced Russian sturgeons (∼13.68×). The results showed that using BaseVar+STITCH at a sequencing depth of 2× with a sample size larger than 300 resulted in the highest genotyping accuracy. In addition, when the sequencing depth reached 0.5× and SNP density was reduced to 50 K through linkage disequilibrium pruning, the prediction accuracy was comparable to that of whole sequencing depth. Furthermore, an incremental feature selection method has the potential to improve prediction accuracy. This study suggests that the combination of LCS and imputation can be a cost-effective strategy, contributing to the genetic improvement of economic traits and promoting genetic gains in aquaculture species.</p></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 4","pages":"Article 110874"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324000958/pdfft?md5=01ca2ae401b39215d97aee9cf1df9f3a&pid=1-s2.0-S0888754324000958-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324000958","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-coverage whole-genome sequencing (LCS) offers a cost-effective alternative for sturgeon breeding, especially given the lack of SNP chips and the high costs associated with whole-genome sequencing. In this study, the efficiency of LCS for genotype imputation and genomic prediction was assessed in 643 sequenced Russian sturgeons (∼13.68×). The results showed that using BaseVar+STITCH at a sequencing depth of 2× with a sample size larger than 300 resulted in the highest genotyping accuracy. In addition, when the sequencing depth reached 0.5× and SNP density was reduced to 50 K through linkage disequilibrium pruning, the prediction accuracy was comparable to that of whole sequencing depth. Furthermore, an incremental feature selection method has the potential to improve prediction accuracy. This study suggests that the combination of LCS and imputation can be a cost-effective strategy, contributing to the genetic improvement of economic traits and promoting genetic gains in aquaculture species.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.