P–T–x Phase Diagram of Al–Ba System

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Inorganic Materials: Applied Research Pub Date : 2024-06-03 DOI:10.1134/S2075113324700345
M. I. Alymov, Yu. V. Levinsky, E. V. Vershinina
{"title":"P–T–x Phase Diagram of Al–Ba System","authors":"M. I. Alymov,&nbsp;Yu. V. Levinsky,&nbsp;E. V. Vershinina","doi":"10.1134/S2075113324700345","DOIUrl":null,"url":null,"abstract":"<p>A two component Al–Ba system has been studied in which intermetallic compounds are formed that are stable at temperatures above the melting points of both barium and aluminum. This allows us to consider barium as a promising alloying element for aluminum alloys operating at high temperatures, which is also characterized by relatively high vapor pressure. Widespread use of aluminum–barium alloy in various fields of metallurgy for the preparation of alloys and complex modification of steels and cast irons, where aluminum improves the quality of steels, acting as a reducing agent for iron in its oxide compounds, and barium promotes the graphitization of cast irons, leads to improved structures of pearlitic and ferritic compounds. Taking into account the high vapor pressure of Ba in the aluminum–barium system is necessary when analyzing compositions in pressure–temperature–composition coordinates (<i>p</i>–<i>T</i>–<i>x</i> state diagrams), which can be used in the development of ternary or higher alloys containing aluminum and barium.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 3","pages":"889 - 892"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A two component Al–Ba system has been studied in which intermetallic compounds are formed that are stable at temperatures above the melting points of both barium and aluminum. This allows us to consider barium as a promising alloying element for aluminum alloys operating at high temperatures, which is also characterized by relatively high vapor pressure. Widespread use of aluminum–barium alloy in various fields of metallurgy for the preparation of alloys and complex modification of steels and cast irons, where aluminum improves the quality of steels, acting as a reducing agent for iron in its oxide compounds, and barium promotes the graphitization of cast irons, leads to improved structures of pearlitic and ferritic compounds. Taking into account the high vapor pressure of Ba in the aluminum–barium system is necessary when analyzing compositions in pressure–temperature–composition coordinates (pTx state diagrams), which can be used in the development of ternary or higher alloys containing aluminum and barium.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al-Ba 系统的 P-T-x 相图
摘要 对一种双组分 Al-Ba 系统进行了研究,在该系统中形成的金属间化合物在高于钡和铝熔点的温度下都很稳定。这使我们能够考虑将钡作为在高温下工作的铝合金的一种有前途的合金元素,其特点也是蒸汽压相对较高。铝钡合金被广泛应用于冶金的各个领域,用于制备合金以及对钢和铸铁进行复杂的改性,其中铝作为氧化物中铁的还原剂提高了钢的质量,而钡则促进了铸铁的石墨化,从而改善了珠光体和铁素体化合物的结构。在分析压力-温度-成分坐标(p-T-x 状态图)中的成分时,必须考虑到铝钡体系中钡的高蒸汽压,这可用于开发含铝和钡的三元或更高合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Materials: Applied Research
Inorganic Materials: Applied Research Engineering-Engineering (all)
CiteScore
0.90
自引率
0.00%
发文量
199
期刊介绍: Inorganic Materials: Applied Research  contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya  and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.
期刊最新文献
Thermal Conductivity of YAG:Nd + Mo Ceramic Composites Obtained by Spark Plasma Sintering The Influence of TiC and TiB2 Reinforcement on the Properties and Structure of Aluminum Alloy AMg2 Highly Porous Ceramic Materials Based on Coarse-Dispersed αAl2O3 Methods for Studying the Electrical Characteristics of the Epitaxial Layers of n/p-InxGa1 – xAs Solid Solutions for Large-Area Device Structures Experimental Assessment of the Adequacy of Numerical Modeling of the Interlayer Crack Resistance of a Laminate Glass-Epoxy Composite under Combined Loading Mode I/II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1