An Efficient Safety Life Analysis Method Under Required Failure Possibility Constraint by SK-FS-Based Dichotomy

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Fuzzy Systems Pub Date : 2024-06-03 DOI:10.1007/s40815-024-01749-5
Xia Jiang, Zhenzhou Lu, Yingshi Hu
{"title":"An Efficient Safety Life Analysis Method Under Required Failure Possibility Constraint by SK-FS-Based Dichotomy","authors":"Xia Jiang, Zhenzhou Lu, Yingshi Hu","doi":"10.1007/s40815-024-01749-5","DOIUrl":null,"url":null,"abstract":"<p>Safety life analysis can provide guidance for safety service and maintenance plan of structure. To efficiently analyze the structural safety life under required failure possibility in the presence of fuzzy uncertainty, this paper proposes a sequential Kriging (SK)-based fuzzy simulation (FS) combined with dichotomy (SK-FS-D) method. Firstly, based on monotonic relationship of time-dependent failure possibility (TDFP) and service time, the SK-FS-D uses dichotomy method to search the safety life. Secondly, the SK-FS-D proposes a strategy of sequentially updating Kriging surrogate model in the candidate sample pool (CSP) of fuzzy simulation (FS) to estimate the TDFP corresponding to each possible life searched by dichotomy, and the next dichotomy interval is determined by TDFP estimated by the convergent Kriging model. This strategy can improve the efficiency of SK-FS-D by avoiding training Kriging model at the life not visited by dichotomy and extend the engineering applicability of SK-FS-D by inheriting the advantages of FS method. Moreover, the CSP reduction strategy is further adopted to improve the computational efficiency of TDFP according to some correct information provided by the convergent Kriging model and the property of fuzzy design point. Finally, one numerical example and three engineering examples are introduced to verify the superior performance of the proposed SK-FS-D over the existing methods.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"5 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01749-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Safety life analysis can provide guidance for safety service and maintenance plan of structure. To efficiently analyze the structural safety life under required failure possibility in the presence of fuzzy uncertainty, this paper proposes a sequential Kriging (SK)-based fuzzy simulation (FS) combined with dichotomy (SK-FS-D) method. Firstly, based on monotonic relationship of time-dependent failure possibility (TDFP) and service time, the SK-FS-D uses dichotomy method to search the safety life. Secondly, the SK-FS-D proposes a strategy of sequentially updating Kriging surrogate model in the candidate sample pool (CSP) of fuzzy simulation (FS) to estimate the TDFP corresponding to each possible life searched by dichotomy, and the next dichotomy interval is determined by TDFP estimated by the convergent Kriging model. This strategy can improve the efficiency of SK-FS-D by avoiding training Kriging model at the life not visited by dichotomy and extend the engineering applicability of SK-FS-D by inheriting the advantages of FS method. Moreover, the CSP reduction strategy is further adopted to improve the computational efficiency of TDFP according to some correct information provided by the convergent Kriging model and the property of fuzzy design point. Finally, one numerical example and three engineering examples are introduced to verify the superior performance of the proposed SK-FS-D over the existing methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 SK-FS 二分法的必要故障可能性约束下的高效安全寿命分析方法
安全寿命分析可为结构的安全服务和维护计划提供指导。为了在模糊不确定性条件下有效地分析要求失效可能性下的结构安全寿命,本文提出了一种基于序列克里金(SK)的模糊模拟(FS)与二分法相结合的方法(SK-FS-D)。首先,基于随时间变化的失效可能性(TDFP)和服务时间的单调关系,SK-FS-D 使用二分法来搜索安全寿命。其次,SK-FS-D 提出了在模糊仿真(FS)的候选样本池(CSP)中依次更新 Kriging 代理模型的策略,以估计二分法搜索到的每种可能寿命对应的 TDFP,并根据收敛的 Kriging 模型估计的 TDFP 确定下一个二分法区间。这种策略可以避免在二分法未访问的生命中训练 Kriging 模型,从而提高 SK-FS-D 的效率,并继承了 FS 方法的优点,扩展了 SK-FS-D 的工程适用性。此外,根据收敛克里金模型提供的一些正确信息和模糊设计点的特性,进一步采用 CSP 简化策略提高了 TDFP 的计算效率。最后,介绍了一个数值实例和三个工程实例,以验证所提出的 SK-FS-D 与现有方法相比具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
期刊最新文献
Event-Based Finite-Time $$H_\infty $$ Security Control for Networked Control Systems with Deception Attacks A Distance-Based Approach to Fuzzy Cognitive Maps Using Pythagorean Fuzzy Sets Relaxed Stability and Non-weighted $$L_2$$ -Gain Analysis for Asynchronously Switched Polynomial Fuzzy Systems Nonsingular Fast Terminal Sliding Mode Control of Uncertain Robotic Manipulator System Based on Adaptive Fuzzy Wavelet Neural Network Efficient and Effective Anomaly Detection in Autonomous Vehicles: A Combination of Gradient Boosting and ANFIS Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1