{"title":"Merton portfolio allocation under stochastic dividends","authors":"Lorenzo Reus","doi":"10.1007/s11590-024-02125-w","DOIUrl":null,"url":null,"abstract":"<p>Current methodologies for finding portfolio rules under the Merton framework employ hard-to-implement numerical techniques. This work presents a methodology that can derive an allocation à la Merton in a spreadsheet, under an incomplete market with a time-varying dividend yield and long-only constraints. The first step of the method uses the martingale approach to obtain a portfolio rule in a complete artificial market. The second step derives a closed-form optimal solution satisfying the long-only constraints, from the unconstrained solution of the first step. This is done by determining closed-form Lagrangian dual processes satisfying the primal-dual optimality conditions between the true and artificial markets. The last step estimates the parameters defined in the artificial market, to then obtain analytical approximations for the hedging demand component within the optimal portfolio rule of the previous step. The methodology is tested with real market data from 16 US stocks from the Dow Jones. The results show that the proposed solution delivers higher financial wealth than the myopic solution, which does not consider the time-varying nature of the dividend yield. The sensitivity analysis carried out on the closed-form solution reveals that the difference with respect to the myopic solution increases when the price of the risky asset is more sensitive to the dividend yield, and when the dividend yield presents a higher probability of diverging from the current yield. The proposed solution also outperforms a known Merton-type solution that derives the Lagrangian dual processes in another way.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02125-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current methodologies for finding portfolio rules under the Merton framework employ hard-to-implement numerical techniques. This work presents a methodology that can derive an allocation à la Merton in a spreadsheet, under an incomplete market with a time-varying dividend yield and long-only constraints. The first step of the method uses the martingale approach to obtain a portfolio rule in a complete artificial market. The second step derives a closed-form optimal solution satisfying the long-only constraints, from the unconstrained solution of the first step. This is done by determining closed-form Lagrangian dual processes satisfying the primal-dual optimality conditions between the true and artificial markets. The last step estimates the parameters defined in the artificial market, to then obtain analytical approximations for the hedging demand component within the optimal portfolio rule of the previous step. The methodology is tested with real market data from 16 US stocks from the Dow Jones. The results show that the proposed solution delivers higher financial wealth than the myopic solution, which does not consider the time-varying nature of the dividend yield. The sensitivity analysis carried out on the closed-form solution reveals that the difference with respect to the myopic solution increases when the price of the risky asset is more sensitive to the dividend yield, and when the dividend yield presents a higher probability of diverging from the current yield. The proposed solution also outperforms a known Merton-type solution that derives the Lagrangian dual processes in another way.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.