Improving future drought predictions – a novel multi-method framework based on mutual information for subset selection and spatial aggregation of global climate models of precipitation
{"title":"Improving future drought predictions – a novel multi-method framework based on mutual information for subset selection and spatial aggregation of global climate models of precipitation","authors":"Muhammad Shakeel, Zulfiqar Ali","doi":"10.1007/s00477-024-02746-8","DOIUrl":null,"url":null,"abstract":"<p>Selecting appropriate Global Climate Models (GCMs) presents a significant challenge for accurate climate projections. To address this, a novel framework based on information theory based minimum redundancy and maximum relevancy (MRMR) method identifies top-performing GCMs across the entire study region using multicriteria decision analysis methodology. A subset of the ten best-performing models out of twenty-two GCMs is chosen for multi-model ensemble analysis. Five MME methods are selected to assess the ensemble performance of the ten selected GCMs, categorized into simple, regression-based, geometric-based, and machine learning ensembles. This study evaluates the effectiveness of the MME method based on a comprehensive index called the extended distance between indices of simulation and observation. An Adaptive Multimodel Standardized Drought Index (AMSDI) has been developed based on the optimal MME method. For the application of the framework and the proposed index, historical precipitation data from 1950 to 2014 were utilized from 28 grid points in the Punjab province of Pakistan as the reference dataset. Additionally, simulations from 22 models of the Coupled Model Intercomparison Project phase 6, both past and future, were employed for the estimation procedure. In AMSDI indicator, we used improved multimodel ensemble of precipitation for future drought characterization under various future scenarios. Outcome associated with this research show that AMSDI effectively have ability to effectively identifiy extreme drought events for all three future scenarios. In conclusion, the AMSDI method is shown to be effective and flexible, improving accuracy in monitoring droughts.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"44 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02746-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Selecting appropriate Global Climate Models (GCMs) presents a significant challenge for accurate climate projections. To address this, a novel framework based on information theory based minimum redundancy and maximum relevancy (MRMR) method identifies top-performing GCMs across the entire study region using multicriteria decision analysis methodology. A subset of the ten best-performing models out of twenty-two GCMs is chosen for multi-model ensemble analysis. Five MME methods are selected to assess the ensemble performance of the ten selected GCMs, categorized into simple, regression-based, geometric-based, and machine learning ensembles. This study evaluates the effectiveness of the MME method based on a comprehensive index called the extended distance between indices of simulation and observation. An Adaptive Multimodel Standardized Drought Index (AMSDI) has been developed based on the optimal MME method. For the application of the framework and the proposed index, historical precipitation data from 1950 to 2014 were utilized from 28 grid points in the Punjab province of Pakistan as the reference dataset. Additionally, simulations from 22 models of the Coupled Model Intercomparison Project phase 6, both past and future, were employed for the estimation procedure. In AMSDI indicator, we used improved multimodel ensemble of precipitation for future drought characterization under various future scenarios. Outcome associated with this research show that AMSDI effectively have ability to effectively identifiy extreme drought events for all three future scenarios. In conclusion, the AMSDI method is shown to be effective and flexible, improving accuracy in monitoring droughts.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.