Arbitrary High Order ADER-DG Method with Local DG Predictor for Solutions of Initial Value Problems for Systems of First-Order Ordinary Differential Equations

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Scientific Computing Pub Date : 2024-06-04 DOI:10.1007/s10915-024-02578-2
Ivan S. Popov
{"title":"Arbitrary High Order ADER-DG Method with Local DG Predictor for Solutions of Initial Value Problems for Systems of First-Order Ordinary Differential Equations","authors":"Ivan S. Popov","doi":"10.1007/s10915-024-02578-2","DOIUrl":null,"url":null,"abstract":"<p>An adaptation of the arbitrary high order ADER-DG numerical method with local DG predictor for solving the IVP for a first-order non-linear ODE system is proposed. The proposed numerical method is a completely one-step ODE solver with uniform steps, and is simple in algorithmic and software implementations. It was shown that the proposed version of the ADER-DG numerical method is <b><i>A</i></b>-stable and <b><i>L</i></b>-stable. The ADER-DG numerical method demonstrates superconvergence with convergence order <span>\\({\\varvec{2N}}+\\textbf{1}\\)</span> for the solution at grid nodes, while the local solution obtained using the local DG predictor has convergence order <span>\\({\\varvec{N}}+\\textbf{1}\\)</span>. It was demonstrated that an important applied feature of this implementation of the numerical method is the possibility of using the local solution as a solution with a subgrid resolution, which makes it possible to obtain a detailed solution even on very coarse coordinate grids. The scale of the error of the local solution, when calculating using standard representations of single or double precision floating point numbers, using large values of the degree <b><i>N</i></b>, practically does not differ from the error of the solution at the grid nodes. The capabilities of the ADER-DG method for solving stiff ODE systems characterized by extreme stiffness are demonstrated. Estimates of the computational costs of the ADER-DG numerical method are obtained.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02578-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An adaptation of the arbitrary high order ADER-DG numerical method with local DG predictor for solving the IVP for a first-order non-linear ODE system is proposed. The proposed numerical method is a completely one-step ODE solver with uniform steps, and is simple in algorithmic and software implementations. It was shown that the proposed version of the ADER-DG numerical method is A-stable and L-stable. The ADER-DG numerical method demonstrates superconvergence with convergence order \({\varvec{2N}}+\textbf{1}\) for the solution at grid nodes, while the local solution obtained using the local DG predictor has convergence order \({\varvec{N}}+\textbf{1}\). It was demonstrated that an important applied feature of this implementation of the numerical method is the possibility of using the local solution as a solution with a subgrid resolution, which makes it possible to obtain a detailed solution even on very coarse coordinate grids. The scale of the error of the local solution, when calculating using standard representations of single or double precision floating point numbers, using large values of the degree N, practically does not differ from the error of the solution at the grid nodes. The capabilities of the ADER-DG method for solving stiff ODE systems characterized by extreme stiffness are demonstrated. Estimates of the computational costs of the ADER-DG numerical method are obtained.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用局部 DG 预测器解决一阶常微分方程系统初值问题的任意高阶 ADER-DG 方法
提出了一种带有局部 DG 预测器的任意高阶 ADER-DG 数值方法,用于求解一阶非线性 ODE 系统的 IVP。所提出的数值方法是一种完全的一步 ODE 求解器,步长均匀,算法和软件实现简单。研究表明,所提出的 ADER-DG 数值方法具有 A 稳定性和 L 稳定性。ADER-DG 数值方法在网格节点上的解具有收敛阶为 \({\varvec{2N}}+\textbf{1}\)的超收敛性,而使用局部 DG 预测器得到的局部解具有收敛阶为 \({\varvec{N}}+\textbf{1}\)的收敛性。结果表明,这种数值方法的一个重要应用特征是可以将局部解用作具有子网格分辨率的解,这使得即使在非常粗糙的坐标网格上也能获得详细的解。在使用单精度或双精度浮点数的标准表示法计算时,如果使用较大的阶数 N 值,局部解的误差范围实际上与网格节点解的误差并无差别。ADER-DG 方法在求解具有极端刚度特征的刚性 ODE 系统方面的能力得到了证明。此外,还估算了 ADER-DG 数值方法的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
期刊最新文献
Nonlinear Hierarchical Matrix Factorization-Based Tensor Ring Approximation for Multi-dimensional Image Recovery Fully Discrete Finite Difference Schemes for the Fractional Korteweg-de Vries Equation Curvature-Dependent Elastic Bending Total Variation Model for Image Inpainting with the SAV Algorithm The Optimal Weights of Non-local Means for Variance Stabilized Noise Removal An HDG and CG Method for the Indefinite Time-Harmonic Maxwell’s Equations Under Minimal Regularity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1