Searching For Music Mixing Graphs: A Pruning Approach

Sungho Lee, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu Lee, Yuki Mitsufuji
{"title":"Searching For Music Mixing Graphs: A Pruning Approach","authors":"Sungho Lee, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu Lee, Yuki Mitsufuji","doi":"arxiv-2406.01049","DOIUrl":null,"url":null,"abstract":"Music mixing is compositional -- experts combine multiple audio processors to\nachieve a cohesive mix from dry source tracks. We propose a method to reverse\nengineer this process from the input and output audio. First, we create a\nmixing console that applies all available processors to every chain. Then,\nafter the initial console parameter optimization, we alternate between removing\nredundant processors and fine-tuning. We achieve this through differentiable\nimplementation of both processors and pruning. Consequently, we find a sparse\nmixing graph that achieves nearly identical matching quality of the full mixing\nconsole. We apply this procedure to dry-mix pairs from various datasets and\ncollect graphs that also can be used to train neural networks for music mixing\napplications.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Music mixing is compositional -- experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to dry-mix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搜索音乐混合图:剪枝法
音乐混音是一种作曲--专家们将多个音频处理器结合在一起,从枯燥的源音轨中获得具有凝聚力的混音效果。我们提出了一种从输入和输出音频反向设计这一过程的方法。首先,我们创建了一个混音控制台,将所有可用的处理器应用到每一条链上。然后,在初始控制台参数优化后,我们交替移除多余的处理器并进行微调。我们通过处理器和剪枝的可微调实现这一点。因此,我们找到了一个稀疏混音图,其匹配质量几乎与完整混音控制台相同。我们将这一过程应用于各种数据集中的干混音对,并收集了可用于训练音乐混音应用神经网络的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1