Ali Turab, Andrés Montoyo, Josué-Antonio Nescolarde-Selva
{"title":"Computational and analytical analysis of integral-differential equations for modeling avoidance learning behavior","authors":"Ali Turab, Andrés Montoyo, Josué-Antonio Nescolarde-Selva","doi":"10.1007/s12190-024-02130-3","DOIUrl":null,"url":null,"abstract":"<p>This work emphasizes the computational and analytical analysis of integral-differential equations, with a particular application in modeling avoidance learning processes. Firstly, we suggest an approach to determine a unique solution to the given model by employing methods from functional analysis and fixed-point theory. We obtain numerical solutions using the approach of Picard iteration and evaluate their stability in the context of minor perturbations. In addition, we explore the practical application of these techniques by providing two examples that highlight the thorough analysis of behavioral responses using numerical approximations. In the end, we examine the efficacy of our suggested ordinary differential equations (ODEs) for studying the avoidance learning behavior of animals. Furthermore, we investigate the convergence and error analysis of the proposed ODEs using multiple numerical techniques. This integration of theoretical and practical analysis enhances the domain of applied mathematics by providing important insights for behavioral science research.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"22 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02130-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work emphasizes the computational and analytical analysis of integral-differential equations, with a particular application in modeling avoidance learning processes. Firstly, we suggest an approach to determine a unique solution to the given model by employing methods from functional analysis and fixed-point theory. We obtain numerical solutions using the approach of Picard iteration and evaluate their stability in the context of minor perturbations. In addition, we explore the practical application of these techniques by providing two examples that highlight the thorough analysis of behavioral responses using numerical approximations. In the end, we examine the efficacy of our suggested ordinary differential equations (ODEs) for studying the avoidance learning behavior of animals. Furthermore, we investigate the convergence and error analysis of the proposed ODEs using multiple numerical techniques. This integration of theoretical and practical analysis enhances the domain of applied mathematics by providing important insights for behavioral science research.
期刊介绍:
JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.