Predictive crystallography at scale: mapping, validating, and learning from 1000 crystal energy landscapes†‡

IF 3.4 3区 化学 Q2 Chemistry Faraday Discussions Pub Date : 2024-06-03 DOI:10.1039/D4FD00105B
Christopher R. Taylor, Patrick W. V. Butler and Graeme M. Day
{"title":"Predictive crystallography at scale: mapping, validating, and learning from 1000 crystal energy landscapes†‡","authors":"Christopher R. Taylor, Patrick W. V. Butler and Graeme M. Day","doi":"10.1039/D4FD00105B","DOIUrl":null,"url":null,"abstract":"<p >Computational crystal structure prediction (CSP) is an increasingly powerful technique in materials discovery, due to its ability to reveal trends and permit insight across the possibility space of crystal structures of a candidate molecule, beyond simply the observed structure(s). In this work, we demonstrate the reliability and scalability of CSP methods for small, rigid organic molecules by performing in-depth CSP investigations for over 1000 such compounds, the largest survey of its kind to-date. We show that this highly-efficient force-field-based CSP approach is superbly predictive, locating 99.4% of observed experimental structures, and ranking a large majority of these (74%) as among the most stable possible structures (to within uncertainty due to thermal effects). We present two examples of insights such large predicted datasets can permit, examining the space group preferences of organic molecular crystals and rationalising empirical rules concerning the spontaneous resolution of chiral molecules. Finally, we exploit this large and diverse dataset for developing transferable machine-learned energy potentials for the organic solid state, training a neural network lattice energy correction to force field energies that offers substantial improvements to the already impressive energy rankings, and a MACE equivariant message-passing neural network for crystal structure re-optimisation. We conclude that the excellent performance and reliability of the CSP workflow enables the creation of very large datasets of broad utility and explanatory power in materials design.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"256 ","pages":" 434-458"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00105b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fd/d4fd00105b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Computational crystal structure prediction (CSP) is an increasingly powerful technique in materials discovery, due to its ability to reveal trends and permit insight across the possibility space of crystal structures of a candidate molecule, beyond simply the observed structure(s). In this work, we demonstrate the reliability and scalability of CSP methods for small, rigid organic molecules by performing in-depth CSP investigations for over 1000 such compounds, the largest survey of its kind to-date. We show that this highly-efficient force-field-based CSP approach is superbly predictive, locating 99.4% of observed experimental structures, and ranking a large majority of these (74%) as among the most stable possible structures (to within uncertainty due to thermal effects). We present two examples of insights such large predicted datasets can permit, examining the space group preferences of organic molecular crystals and rationalising empirical rules concerning the spontaneous resolution of chiral molecules. Finally, we exploit this large and diverse dataset for developing transferable machine-learned energy potentials for the organic solid state, training a neural network lattice energy correction to force field energies that offers substantial improvements to the already impressive energy rankings, and a MACE equivariant message-passing neural network for crystal structure re-optimisation. We conclude that the excellent performance and reliability of the CSP workflow enables the creation of very large datasets of broad utility and explanatory power in materials design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规模化预测晶体学:绘制、验证和学习 1,000 个晶体能量图谱
计算晶体结构预测(CSP)是材料发现领域一项日益强大的技术,因为它能够揭示趋势,并允许深入了解候选分子晶体结构的可能性空间,而不仅仅是观察到的结构。在这项研究中,我们对 1000 多种小型刚性有机分子进行了深入的 CSP 研究,展示了 CSP 方法的可靠性和可扩展性,这是迄今为止同类研究中规模最大的一次。我们的研究表明,这种基于力场的高效 CSP 方法具有极佳的预测性,可以定位 99.4% 的观察到的实验结构,并将其中的绝大部分(74%)列为最稳定的可能结构(由于热效应而导致的不确定性范围内)。我们举两个例子来说明这种大型预测数据集可以带来的启示,即研究有机分子晶体的空间群偏好和合理解释有关手性分子自发解析的经验规则。最后,我们利用这个庞大而多样的数据集,开发了可转移的机器学习有机固态能量势能,训练了神经网络晶格能量校正力场能量,大大提高了已经令人印象深刻的能量排名,还训练了 MACE 等变信息传递神经网络,用于晶体结构的重新优化。我们的结论是,CSP 工作流程的卓越性能和可靠性使其能够创建大型数据集,在材料设计方面具有广泛的实用性和解释力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions CHEMISTRY, PHYSICAL-
CiteScore
4.90
自引率
0.00%
发文量
259
审稿时长
2.8 months
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Back cover List of participants Poster list Back cover Poster list
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1