Proportionally dense subgraphs of maximum size in degree-constrained graphs

Narmina Baghirova, Antoine Castillon
{"title":"Proportionally dense subgraphs of maximum size in degree-constrained graphs","authors":"Narmina Baghirova, Antoine Castillon","doi":"arxiv-2405.20847","DOIUrl":null,"url":null,"abstract":"A proportionally dense subgraph (PDS) of a graph is an induced subgraph of\nsize at least two such that every vertex in the subgraph has proportionally as\nmany neighbors inside as outside of the subgraph. Then, maxPDS is the problem\nof determining a PDS of maximum size in a given graph. If we further require\nthat a PDS induces a connected subgraph, we refer to such problem as connected\nmaxPDS. In this paper, we study the complexity of maxPDS with respect to\nparameters representing the density of a graph and its complement. We consider\n$\\Delta$, representing the maximum degree, $h$, representing the $h$-index, and\ndegen, representing the degeneracy of a graph. We show that maxPDS is NP-hard\nparameterized by $\\Delta,h$ and degen. More specifically, we show that maxPDS\nis NP-hard on graphs with $\\Delta=4$, $h=4$ and degen=2. Then, we show that\nmaxPDS is NP-hard when restricted to dense graphs, more specifically graphs $G$\nsuch that $\\Delta(\\overline{G})\\leq 6$, and graphs $G$ such that\n$degen(\\overline{G}) \\leq 2$ and $\\overline{G}$ is bipartite, where\n$\\overline{G}$ represents the complement of $G$. On the other hand, we show\nthat maxPDS is polynomial-time solvable on graphs with $h\\le2$. Finally, we\nconsider graphs $G$ such that $h(\\overline{G})\\le 2$ and show that there exists\na polynomial-time algorithm for finding a PDS of maximum size in such graphs.\nThis result implies polynomial-time complexity on graphs with $n$ vertices of\nminimum degree $n-3$, i.e. graphs $G$ such that $\\Delta(\\overline{G})\\le 2$.\nFor each result presented in this paper, we consider connected maxPDS and\nexplain how to extend it when we require connectivity.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A proportionally dense subgraph (PDS) of a graph is an induced subgraph of size at least two such that every vertex in the subgraph has proportionally as many neighbors inside as outside of the subgraph. Then, maxPDS is the problem of determining a PDS of maximum size in a given graph. If we further require that a PDS induces a connected subgraph, we refer to such problem as connected maxPDS. In this paper, we study the complexity of maxPDS with respect to parameters representing the density of a graph and its complement. We consider $\Delta$, representing the maximum degree, $h$, representing the $h$-index, and degen, representing the degeneracy of a graph. We show that maxPDS is NP-hard parameterized by $\Delta,h$ and degen. More specifically, we show that maxPDS is NP-hard on graphs with $\Delta=4$, $h=4$ and degen=2. Then, we show that maxPDS is NP-hard when restricted to dense graphs, more specifically graphs $G$ such that $\Delta(\overline{G})\leq 6$, and graphs $G$ such that $degen(\overline{G}) \leq 2$ and $\overline{G}$ is bipartite, where $\overline{G}$ represents the complement of $G$. On the other hand, we show that maxPDS is polynomial-time solvable on graphs with $h\le2$. Finally, we consider graphs $G$ such that $h(\overline{G})\le 2$ and show that there exists a polynomial-time algorithm for finding a PDS of maximum size in such graphs. This result implies polynomial-time complexity on graphs with $n$ vertices of minimum degree $n-3$, i.e. graphs $G$ such that $\Delta(\overline{G})\le 2$. For each result presented in this paper, we consider connected maxPDS and explain how to extend it when we require connectivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
度受限图中最大尺寸的比例致密子图
一个图的比例密集子图(PDS)是一个大小至少为 2 的诱导子图,子图中的每个顶点在子图内和子图外都有比例相同数量的邻居。那么,maxPDS 就是确定给定图中最大尺寸的 PDS 的问题。如果我们进一步要求 PDS 诱导一个连通的子图,我们就把这样的问题称为 connectedmaxPDS。在本文中,我们研究了 maxPDS 在表示图及其补集密度的参数方面的复杂性。我们考虑了代表最大度的 $/Delta$、代表 $h$-index 的 $h$ 和代表图的退化度的 degen。我们证明 maxPDS 是由 $\Delta, h$ 和 degen 参数化的 NP-hard。更具体地说,我们证明了在 $\Delta=4$、$h=4$ 和 degen=2 的图上,maxPDS 是 NP-hard。然后,我们证明了当局限于密集图,更具体地说,当 $\Delta(\overline{G})\leq 6$,以及当 $degen(\overline{G}) \leq 2$,并且 $\overline{G}$ 是双分部图,其中 $\overline{G}$ 代表 $G$ 的补码时,maxPDS 是 NP-hard。另一方面,我们证明了 maxPDS 在具有 $h\le2$ 的图上是多项式时间可解的。最后,我们考虑了$G$这样的图,即$h(\overline{G})\le 2$,并证明存在一种多项式时间算法,可以在这样的图中找到最大尺寸的 PDS。对于本文提出的每个结果,我们都考虑了连通的最大 PDS,并解释了当我们需要连通性时如何扩展它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Direct Sum Tests Complexity and algorithms for Swap median and relation to other consensus problems Journalists, Emotions, and the Introduction of Generative AI Chatbots: A Large-Scale Analysis of Tweets Before and After the Launch of ChatGPT Almost-catalytic Computation Fast Simulation of Cellular Automata by Self-Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1