Denoising Hyperspectral Patches Between Manzius U & Boguslawsky M Lunar Craters from the Ch-1 M3 & Ch-2 IIRS Data

IF 2.2 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Journal of the Indian Society of Remote Sensing Pub Date : 2024-06-02 DOI:10.1007/s12524-024-01883-5
Anurag Dutta
{"title":"Denoising Hyperspectral Patches Between Manzius U & Boguslawsky M Lunar Craters from the Ch-1 M3 & Ch-2 IIRS Data","authors":"Anurag Dutta","doi":"10.1007/s12524-024-01883-5","DOIUrl":null,"url":null,"abstract":"<p>The Chandrayaan 3 (Ch-3) mission, as of the day (23rd of August 2023), is all set to explore the moon’s surface in great detail. Scientists have carefully chosen the landing site based on data gathered from previous missions, namely Chandrayaan 2’s (Ch-2) Imaging Infrared Spectrometer (IIRS) and Chandrayaan 1’s (Ch-1) Moon Mineralogy Mapper (M<sup>3</sup>). Our research analyzes the data from the selected Ch-3 landing site by using sophisticated techniques to remove unwanted noise from the hyperspectral images provided by IIRS and M<sup>3</sup>. The IIRS on Ch-2 and M<sup>3</sup> on Ch-1 captured valuable information differently, giving us a better understanding of the moon’s composition and features. We aim to improve the quality of the Ch-3 landing site data by eliminating any interference caused by noise, making the images clearer and more useful. To achieve this, we’re employing two denoising methods- HyRes (Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling) and HyMiNoR (Hyperspectral Mixed Gaussian and Sparse Noise Reduction). These smart algorithms will help us reveal the true nature of the lunar landscape hidden beneath the noise, giving us better insights into the landing site’s characteristics.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"60 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01883-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Chandrayaan 3 (Ch-3) mission, as of the day (23rd of August 2023), is all set to explore the moon’s surface in great detail. Scientists have carefully chosen the landing site based on data gathered from previous missions, namely Chandrayaan 2’s (Ch-2) Imaging Infrared Spectrometer (IIRS) and Chandrayaan 1’s (Ch-1) Moon Mineralogy Mapper (M3). Our research analyzes the data from the selected Ch-3 landing site by using sophisticated techniques to remove unwanted noise from the hyperspectral images provided by IIRS and M3. The IIRS on Ch-2 and M3 on Ch-1 captured valuable information differently, giving us a better understanding of the moon’s composition and features. We aim to improve the quality of the Ch-3 landing site data by eliminating any interference caused by noise, making the images clearer and more useful. To achieve this, we’re employing two denoising methods- HyRes (Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling) and HyMiNoR (Hyperspectral Mixed Gaussian and Sparse Noise Reduction). These smart algorithms will help us reveal the true nature of the lunar landscape hidden beneath the noise, giving us better insights into the landing site’s characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据 Ch-1 M3 和 Ch-2 IIRS 数据对 Manzius U 和 Boguslawsky M 月面环形山之间的高光谱斑块进行去噪处理
截至目前(2023 年 8 月 23 日),"月壤 3 号"(Chandrayaan 3,Ch-3)任务已准备就绪,将对月球表面进行深入细致的探索。科学家们根据以往任务收集的数据,即 "月壤 2 号"(Ch-2)的成像红外分光仪(IIRS)和 "月壤 1 号"(Ch-1)的月球矿物学绘图仪(M3),精心选择了着陆点。我们的研究通过使用复杂的技术,从 IIRS 和 M3 提供的高光谱图像中去除不必要的噪音,从而对选定的 Ch-3 着陆点的数据进行分析。Ch-2上的IIRS和Ch-1上的M3捕捉到了不同的有价值信息,让我们更好地了解了月球的组成和特征。我们的目标是提高 Ch-3 着陆点数据的质量,消除噪音干扰,使图像更清晰、更有用。为此,我们采用了两种去噪方法--HyRes(使用稀疏和低等级建模的自动高光谱图像复原)和 HyMiNoR(高光谱混合高斯和稀疏降噪)。这些智能算法将帮助我们揭示隐藏在噪声之下的月球景观的真实面貌,让我们更好地了解着陆点的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Indian Society of Remote Sensing
Journal of the Indian Society of Remote Sensing ENVIRONMENTAL SCIENCES-REMOTE SENSING
CiteScore
4.80
自引率
8.00%
发文量
163
审稿时长
7 months
期刊介绍: The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.
期刊最新文献
A Heuristic Approach of Radiometric Calibration for Ocean Colour Sensors: A Case Study Using ISRO’s Ocean Colour Monitor-2 Farmland Extraction from UAV Remote Sensing Images Based on Improved SegFormer Model Self Organizing Map based Land Cover Clustering for Decision-Level Jaccard Index and Block Activity based Pan-Sharpened Images Improved Building Extraction from Remotely Sensed Images by Integration of Encode–Decoder and Edge Enhancement Models Enhancing Change Detection Accuracy in Remote Sensing Images Through Feature Optimization and Game Theory Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1