Unified one-parameter scaling function for Anderson localization transitions in non-reciprocal non-Hermitian systems

C. Wang, Wenxue He, X. R. Wang, Hechen Ren
{"title":"Unified one-parameter scaling function for Anderson localization transitions in non-reciprocal non-Hermitian systems","authors":"C. Wang, Wenxue He, X. R. Wang, Hechen Ren","doi":"arxiv-2406.01984","DOIUrl":null,"url":null,"abstract":"By using dimensionless conductances as scaling variables, the conventional\none-parameter scaling theory of localization fails for non-reciprocal\nnon-Hermitian systems such as the Hanato-Nelson model. Here, we propose a\none-parameter scaling function using the participation ratio as the scaling\nvariable. Employing a highly accurate numerical procedure based on exact\ndiagonalization, we demonstrate that this one-parameter scaling function can\ndescribe Anderson localization transitions of non-reciprocal non-Hermitian\nsystems in one and two dimensions of symmetry classes AI and A. The critical\nexponents of correlation lengths depend on symmetries and dimensionality only,\na typical feature of universality. Moreover, we derive a complex-gap equation\nbased on the self-consistent Born approximation that can determine the disorder\nat which the point gap closes. The obtained disorders match perfectly the\ncritical disorders of Anderson localization transitions from the one-parameter\nscaling function. Finally, we show that the one-parameter scaling function is\nalso valid for Anderson localization transitions in reciprocal non-Hermitian\nsystems such as two-dimensional class AII$^\\dagger$ and can, thus, serve as a\nunified scaling function for disordered non-Hermitian systems.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By using dimensionless conductances as scaling variables, the conventional one-parameter scaling theory of localization fails for non-reciprocal non-Hermitian systems such as the Hanato-Nelson model. Here, we propose a one-parameter scaling function using the participation ratio as the scaling variable. Employing a highly accurate numerical procedure based on exact diagonalization, we demonstrate that this one-parameter scaling function can describe Anderson localization transitions of non-reciprocal non-Hermitian systems in one and two dimensions of symmetry classes AI and A. The critical exponents of correlation lengths depend on symmetries and dimensionality only, a typical feature of universality. Moreover, we derive a complex-gap equation based on the self-consistent Born approximation that can determine the disorder at which the point gap closes. The obtained disorders match perfectly the critical disorders of Anderson localization transitions from the one-parameter scaling function. Finally, we show that the one-parameter scaling function is also valid for Anderson localization transitions in reciprocal non-Hermitian systems such as two-dimensional class AII$^\dagger$ and can, thus, serve as a unified scaling function for disordered non-Hermitian systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非互惠非ermitian 系统中安德森定位转换的统一单参数缩放函数
通过使用无量纲电导作为缩放变量,传统的一参数局部化缩放理论对于诸如哈纳托-纳尔逊模型这样的非互易非赫米提系统是失效的。在此,我们提出了一种使用参与比作为缩放变量的单参数缩放函数。通过基于精确对角的高精度数值计算过程,我们证明了这个一参数缩放函数可以描述对称类 AI 和 A 的一维和二维非互惠非ermitian 系统的安德森定位转换。此外,我们还推导出基于自洽玻恩近似的复隙方程,它可以确定点隙关闭时的无序度。得到的无序度与单参数缩放函数中安德森局域化转换的临界无序度完全吻合。最后,我们证明了单参数缩放函数对于对等非赫米提系统(如二维 AII 类$^\dagger$)中的安德森定位转换也是有效的,因此可以作为无序非赫米提系统的统一缩放函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1