{"title":"Newtonian gravitational waves from a continuum","authors":"Peter Vadasz","doi":"10.1098/rspa.2023.0656","DOIUrl":null,"url":null,"abstract":"<p>Gravitational waves are being shown to derive directly from Newtonian dynamics for a continuous mass distribution, e.g. compressible fluids or equivalent. It is shown that the equations governing a continuous mass distribution, i.e. the inviscid Navier–Stokes equations for a general variable gravitational field <span><math display=\"inline\">\n<mstyle displaystyle=\"true\" scriptlevel=\"0\">\n<mrow>\n<mrow>\n<mi mathvariant=\"bold-italic\">g</mi>\n</mrow>\n<mrow>\n<mo>(</mo>\n<mrow>\n<mi>t</mi>\n<mo>,</mo>\n<mrow>\n<mi mathvariant=\"bold-italic\">x</mi>\n</mrow>\n</mrow>\n<mo>)</mo>\n</mrow>\n</mrow>\n</mstyle>\n</math></span><span></span>, are equivalent to a form identical to the Maxwell equations from electromagnetism, subject to a specified condition. The consequence of this equivalence is the creation of gravity waves that propagate at a finite speed. The latter implies that Newtonian gravitation as presented in this paper is not ‘spooky action at a distance’ but rather is similar to electromagnetic waves propagating at finite speed, despite the apparent form appearing in the integrated field formula. In addition, this proves that, in analogy to the Maxwell equations, the Newtonian gravitation equations are Lorentz invariant for waves propagating at the speed of light. Since gravitational waves were so far derived only from Einstein’s general relativity theory, it becomes appealing to check if there is a connection between the Newtonian waves presented in this paper and the general relativity type of waves at least in a certain limit of overlapping validity, i.e. as a flat-space approximation. The latter is left for follow-up research.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0656","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational waves are being shown to derive directly from Newtonian dynamics for a continuous mass distribution, e.g. compressible fluids or equivalent. It is shown that the equations governing a continuous mass distribution, i.e. the inviscid Navier–Stokes equations for a general variable gravitational field , are equivalent to a form identical to the Maxwell equations from electromagnetism, subject to a specified condition. The consequence of this equivalence is the creation of gravity waves that propagate at a finite speed. The latter implies that Newtonian gravitation as presented in this paper is not ‘spooky action at a distance’ but rather is similar to electromagnetic waves propagating at finite speed, despite the apparent form appearing in the integrated field formula. In addition, this proves that, in analogy to the Maxwell equations, the Newtonian gravitation equations are Lorentz invariant for waves propagating at the speed of light. Since gravitational waves were so far derived only from Einstein’s general relativity theory, it becomes appealing to check if there is a connection between the Newtonian waves presented in this paper and the general relativity type of waves at least in a certain limit of overlapping validity, i.e. as a flat-space approximation. The latter is left for follow-up research.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.