{"title":"Advances in the understanding of heat shock proteins and their functions in reducing abiotic stress in plants","authors":"Ria Mukhopadhyay, Priyanka Boro, Kapudeep Karmakar, Prajjwal Pradhan, Riman Saha Chowdhury, Bimal Das, Rupsanatan Mandal, Deepak Kumar","doi":"10.1007/s13562-024-00895-z","DOIUrl":null,"url":null,"abstract":"<p>Abiotic stresses such as high temperature, excessive cold, flood, salinity, and drought disturb the normal growth and production which aggravate morphological, physiological, biochemical, and molecular changes in plants. Common abiotic stresses that plants come in contact with are salinity, drought, flood, cold and high temperature. Molecular chaperones are known as key components of the cellular molecular machinery that are working in a broad array of biological systems in response to both normal and extreme stress conditions to sustain cellular homeostasis. Molecular chaperones help in the proper folding of misfolded or native proteins by interacting with them. We review here the role of various molecular chaperones in mitigating the abiotic stress in plants. This includes mainly heat shock proteins (HSPs). Recent advances in our understanding of the molecular mechanisms underlying HSPs responses to abiotic stresses highlight their multilevel nature including sensing, signalling, transcription, translation, and post-translational protein modifications. Based on several reports, the common, shared, and distinctive groups of HSP families related to various types of abiotic stress have been classified. This knowledge can be utilized to improve crop productivity by providing essential molecular targets for the development of multiple stress-tolerant crops through plant breeding methods and genetic engineering.</p>","PeriodicalId":16835,"journal":{"name":"Journal of Plant Biochemistry and Biotechnology","volume":"8 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biochemistry and Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00895-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abiotic stresses such as high temperature, excessive cold, flood, salinity, and drought disturb the normal growth and production which aggravate morphological, physiological, biochemical, and molecular changes in plants. Common abiotic stresses that plants come in contact with are salinity, drought, flood, cold and high temperature. Molecular chaperones are known as key components of the cellular molecular machinery that are working in a broad array of biological systems in response to both normal and extreme stress conditions to sustain cellular homeostasis. Molecular chaperones help in the proper folding of misfolded or native proteins by interacting with them. We review here the role of various molecular chaperones in mitigating the abiotic stress in plants. This includes mainly heat shock proteins (HSPs). Recent advances in our understanding of the molecular mechanisms underlying HSPs responses to abiotic stresses highlight their multilevel nature including sensing, signalling, transcription, translation, and post-translational protein modifications. Based on several reports, the common, shared, and distinctive groups of HSP families related to various types of abiotic stress have been classified. This knowledge can be utilized to improve crop productivity by providing essential molecular targets for the development of multiple stress-tolerant crops through plant breeding methods and genetic engineering.
期刊介绍:
The Journal publishes review articles, research papers, short communications and commentaries in the areas of plant biochemistry, plant molecular biology, microbial and molecular genetics, DNA finger printing, micropropagation, and plant biotechnology including plant genetic engineering, new molecular tools and techniques, genomics & bioinformatics.