Impact of Generative AI (Large Language Models) on the PRA model construction and maintenance, observations

Valentin RychkovEDF R\&D, Claudia PicocoEDF R\&D, Emilie CalecaEDF R\&D
{"title":"Impact of Generative AI (Large Language Models) on the PRA model construction and maintenance, observations","authors":"Valentin RychkovEDF R\\&D, Claudia PicocoEDF R\\&D, Emilie CalecaEDF R\\&D","doi":"arxiv-2406.01133","DOIUrl":null,"url":null,"abstract":"The rapid development of Large Language Models (LLMs) and Generative\nPre-Trained Transformers(GPTs) in the field of Generative Artificial\nIntelligence (AI) can significantly impact task automation in themodern\neconomy. We anticipate that the PRA field will inevitably be affected by this\ntechnology1. Thus, themain goal of this paper is to engage the risk assessment\ncommunity into a discussion of benefits anddrawbacks of this technology for\nPRA. We make a preliminary analysis of possible application of LLM\ninProbabilistic Risk Assessment (PRA) modeling context referring to the ongoing\nexperience in softwareengineering field. We explore potential application\nscenarios and the necessary conditions for controlledLLM usage in PRA modeling\n(whether static or dynamic). Additionally, we consider the potential impact\nofthis technology on PRA modeling tools.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of Large Language Models (LLMs) and Generative Pre-Trained Transformers(GPTs) in the field of Generative Artificial Intelligence (AI) can significantly impact task automation in themodern economy. We anticipate that the PRA field will inevitably be affected by this technology1. Thus, themain goal of this paper is to engage the risk assessment community into a discussion of benefits anddrawbacks of this technology for PRA. We make a preliminary analysis of possible application of LLM inProbabilistic Risk Assessment (PRA) modeling context referring to the ongoing experience in softwareengineering field. We explore potential application scenarios and the necessary conditions for controlledLLM usage in PRA modeling (whether static or dynamic). Additionally, we consider the potential impact ofthis technology on PRA modeling tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成式人工智能(大型语言模型)对 PRA 模型构建和维护的影响,观察结果
在生成式人工智能(AI)领域,大型语言模型(LLM)和生成式预训练变换器(GPT)的快速发展会对现代经济中的任务自动化产生重大影响。我们预计,PRA 领域将不可避免地受到这项技术的影响1。因此,本文的主要目标是让风险评估社区参与讨论该技术对 PRA 的利弊。我们参考软件工程领域的现有经验,初步分析了 LLM 在概率风险评估(PRA)建模中的可能应用。我们探讨了潜在的应用场景,以及在 PRA 建模(无论是静态还是动态)中使用受控LLM 的必要条件。此外,我们还考虑了该技术对 PRA 建模工具的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1