Seyed Javad Mortazavi, Iman Mansouri, Alireza Farzampour, Eleni Retzepis, Jong Wan Hu
{"title":"Evaluation of the Fire Behavior of Low-Rise Eccentrically Braced Frame Structures Under Different Fire Scenarios","authors":"Seyed Javad Mortazavi, Iman Mansouri, Alireza Farzampour, Eleni Retzepis, Jong Wan Hu","doi":"10.1007/s10694-024-01587-9","DOIUrl":null,"url":null,"abstract":"<div><p>The structural system of eccentrically braced frames (EBFs) is one of the most common structural systems with a excellent seismic performance in highly seismic areas. This study investigates the performance of this structural system in low-rise buildings. For this purpose, a three-story structure with this structural system is designed, and its behavior is investigated under six different fire scenarios. To analyze the structure under fire loads, the temperature distribution in the members exposed to the fire is first evaluated using the finite element heat transfer analysis method. Using the non-linear time history thermo-mechanics analysis method, the investigated frame is then analyzed, and the displacement and internal forces of the members are obtained. The results of these analyses show that in scenarios where the fire occurs in braced bays, the structure remains stable for a longer time, and the combination of braces and link beams is effective in redistributing the load applied to the adjacent columns.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3499 - 3528"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01587-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural system of eccentrically braced frames (EBFs) is one of the most common structural systems with a excellent seismic performance in highly seismic areas. This study investigates the performance of this structural system in low-rise buildings. For this purpose, a three-story structure with this structural system is designed, and its behavior is investigated under six different fire scenarios. To analyze the structure under fire loads, the temperature distribution in the members exposed to the fire is first evaluated using the finite element heat transfer analysis method. Using the non-linear time history thermo-mechanics analysis method, the investigated frame is then analyzed, and the displacement and internal forces of the members are obtained. The results of these analyses show that in scenarios where the fire occurs in braced bays, the structure remains stable for a longer time, and the combination of braces and link beams is effective in redistributing the load applied to the adjacent columns.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.