{"title":"Mechanically Strong Superhydrophobic Coating Based on Cu–SiC Electrochemical Composite","authors":"V. G. Glukhov, I. G. Botryakova, N. A. Polyakov","doi":"10.1134/S1067821224600091","DOIUrl":null,"url":null,"abstract":"<p>The paper proposes a method for the formation of superhydrophobic electrochemical coatings based on copper with relatively high mechanical strength. The method of electrodeposition of copper composites with nanodispersed silicon carbide particles is considered as the main approach to obtaining such coatings. Electrochemical codeposition of nanoparticle agglomerates and a copper matrix makes it possible to obtain the required multimodal roughness of coatings. This coating, after treatment with stearic acid, acquires superhydrophobic properties. The paper presents data on the morphology, superhydrophobic properties and chemical composition of coatings. The optimal mode for the formation of such coatings has been determined. According to the results of mechanical tests, the superhydrophobic Cu–SiC composite is superior in resistance to dry friction to many other superhydrophobic coatings formed by electrochemical methods. The resulting coatings have a developed surface morphology, which makes it possible to achieve a wetting angle of 162°. This determines the increased corrosion resistance of copper coated with a superhydrophobic Cu–SiC composite in the salt spray chamber. The time until the first corrosion damages appears on copper in the salt spray chamber increases from several hours (without coating) to 3.5 days (with coating). In this case, the coating continues to remain generally superhydrophobic for more than a day, and after the loss of superhydrophobicity, it remains hydrophobic.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"64 1-3","pages":"15 - 23"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224600091","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The paper proposes a method for the formation of superhydrophobic electrochemical coatings based on copper with relatively high mechanical strength. The method of electrodeposition of copper composites with nanodispersed silicon carbide particles is considered as the main approach to obtaining such coatings. Electrochemical codeposition of nanoparticle agglomerates and a copper matrix makes it possible to obtain the required multimodal roughness of coatings. This coating, after treatment with stearic acid, acquires superhydrophobic properties. The paper presents data on the morphology, superhydrophobic properties and chemical composition of coatings. The optimal mode for the formation of such coatings has been determined. According to the results of mechanical tests, the superhydrophobic Cu–SiC composite is superior in resistance to dry friction to many other superhydrophobic coatings formed by electrochemical methods. The resulting coatings have a developed surface morphology, which makes it possible to achieve a wetting angle of 162°. This determines the increased corrosion resistance of copper coated with a superhydrophobic Cu–SiC composite in the salt spray chamber. The time until the first corrosion damages appears on copper in the salt spray chamber increases from several hours (without coating) to 3.5 days (with coating). In this case, the coating continues to remain generally superhydrophobic for more than a day, and after the loss of superhydrophobicity, it remains hydrophobic.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.