{"title":"Fractional Sobolev spaces on Riemannian manifolds","authors":"Michele Caselli, Enric Florit-Simon, Joaquim Serra","doi":"10.1007/s00208-024-02894-w","DOIUrl":null,"url":null,"abstract":"<p>This article studies the canonical Hilbert energy <span>\\(H^{s/2}(M)\\)</span> on a Riemannian manifold for <span>\\(s\\in (0,2)\\)</span>, with particular focus on the case of closed manifolds. Several equivalent definitions for this energy and the fractional Laplacian on a manifold are given, and they are shown to be identical up to explicit multiplicative constants. Moreover, the precise behavior of the kernel associated with the singular integral definition of the fractional Laplacian is obtained through an in-depth study of the heat kernel on a Riemannian manifold. Furthermore, a monotonicity formula for stationary points of functionals of the type <span>\\({\\mathcal {E}}(v)=[v]^2_{H^{s/2}(M)}+\\int _M F(v) \\, dV\\)</span>, with <span>\\(F\\ge 0\\)</span>, is given, which includes in particular the case of nonlocal <i>s</i>-minimal surfaces. Finally, we prove some estimates for the Caffarelli–Silvestre extension problem, which are of general interest. This work is motivated by Caselli et al. (Yau’s conjecture for nonlocal minimal surfaces, arxiv preprint, 2023), which defines nonlocal minimal surfaces on closed Riemannian manifolds and shows the existence of infinitely many of them for any metric on the manifold, ultimately proving the nonlocal version of a conjecture of Yau (Ann Math Stud 102:669–706, 1982). Indeed, the definitions and results in the present work serve as an essential technical toolbox for the results in Caselli et al. (Yau’s conjecture for nonlocal minimal surfaces, arxiv preprint, 2023).</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"35 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02894-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article studies the canonical Hilbert energy \(H^{s/2}(M)\) on a Riemannian manifold for \(s\in (0,2)\), with particular focus on the case of closed manifolds. Several equivalent definitions for this energy and the fractional Laplacian on a manifold are given, and they are shown to be identical up to explicit multiplicative constants. Moreover, the precise behavior of the kernel associated with the singular integral definition of the fractional Laplacian is obtained through an in-depth study of the heat kernel on a Riemannian manifold. Furthermore, a monotonicity formula for stationary points of functionals of the type \({\mathcal {E}}(v)=[v]^2_{H^{s/2}(M)}+\int _M F(v) \, dV\), with \(F\ge 0\), is given, which includes in particular the case of nonlocal s-minimal surfaces. Finally, we prove some estimates for the Caffarelli–Silvestre extension problem, which are of general interest. This work is motivated by Caselli et al. (Yau’s conjecture for nonlocal minimal surfaces, arxiv preprint, 2023), which defines nonlocal minimal surfaces on closed Riemannian manifolds and shows the existence of infinitely many of them for any metric on the manifold, ultimately proving the nonlocal version of a conjecture of Yau (Ann Math Stud 102:669–706, 1982). Indeed, the definitions and results in the present work serve as an essential technical toolbox for the results in Caselli et al. (Yau’s conjecture for nonlocal minimal surfaces, arxiv preprint, 2023).
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.