{"title":"Shenqi Qiangjing Granules Ameliorate Asthenozoospermia in Mice by Regulating Ferroptosis through the METTL3/GPX4 Signaling Axis.","authors":"Qiuyu Lu, Jiabao Ma, Luying Wei, Jing Fu, Xiaoxia Li, Kedao Lai, Xin Li, Bingyu Xia, Bin Bin, Aicun Tang","doi":"10.1620/tjem.2024.J040","DOIUrl":null,"url":null,"abstract":"<p><p>Asthenozoospermia is a leading cause of male infertility, yet current pharmacotherapies yield suboptimal outcomes, underscoring the urgent need for novel treatment modalities. Herein, we induced asthenozoospermic mouse models using busulfan and investigated the therapeutic effects of Shenqi Qiangjing Granules (SQ) on testicular pathology, serum sex hormone and steroidogenic enzyme levels, and ferroptosis. Furthermore, utilizing GC-1 spg cell lines, we elucidated the role of the METTL3-mediated m<sup>6</sup>A modification in GPX4 mRNA stability. Treatment with SQ or Fer-1 (an inhibitor of ferroptosis) significantly ameliorated testicular pathological injury, restored abnormal serum sex hormone levels, and enhanced testicular steroidogenic enzyme expression, highlighting the therapeutic potential of targeting ferroptosis in asthenozoospermia. In elucidating the molecular mechanism of METTL3 in ferroptosis, we found that METTL3 regulates GPX4 mRNA stability, subsequently impacting ferroptosis and sperm quality. Knockdown of METTL3 mimicked the effects of SQ treatment, while overexpression of METTL3 partially reversed SQ-mediated effects on ferroptosis and asthenozoospermia, underscoring the pivotal role of METTL3 in SQ therapy. In conclusion, the METTL3-GPX4-ferroptosis axis emerges as a novel regulatory pathway in the pathogenesis of asthenozoospermia. Targeting this axis, particularly through interventions such as SQ treatment, holds promise for the management of male infertility.</p>","PeriodicalId":23187,"journal":{"name":"Tohoku Journal of Experimental Medicine","volume":" ","pages":"9-19"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1620/tjem.2024.J040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Asthenozoospermia is a leading cause of male infertility, yet current pharmacotherapies yield suboptimal outcomes, underscoring the urgent need for novel treatment modalities. Herein, we induced asthenozoospermic mouse models using busulfan and investigated the therapeutic effects of Shenqi Qiangjing Granules (SQ) on testicular pathology, serum sex hormone and steroidogenic enzyme levels, and ferroptosis. Furthermore, utilizing GC-1 spg cell lines, we elucidated the role of the METTL3-mediated m6A modification in GPX4 mRNA stability. Treatment with SQ or Fer-1 (an inhibitor of ferroptosis) significantly ameliorated testicular pathological injury, restored abnormal serum sex hormone levels, and enhanced testicular steroidogenic enzyme expression, highlighting the therapeutic potential of targeting ferroptosis in asthenozoospermia. In elucidating the molecular mechanism of METTL3 in ferroptosis, we found that METTL3 regulates GPX4 mRNA stability, subsequently impacting ferroptosis and sperm quality. Knockdown of METTL3 mimicked the effects of SQ treatment, while overexpression of METTL3 partially reversed SQ-mediated effects on ferroptosis and asthenozoospermia, underscoring the pivotal role of METTL3 in SQ therapy. In conclusion, the METTL3-GPX4-ferroptosis axis emerges as a novel regulatory pathway in the pathogenesis of asthenozoospermia. Targeting this axis, particularly through interventions such as SQ treatment, holds promise for the management of male infertility.
期刊介绍:
Our mission is to publish peer-reviewed papers in all branches of medical sciences including basic medicine, social medicine, clinical medicine, nursing sciences and disaster-prevention science, and to present new information of exceptional novelty, importance and interest to a broad readership of the TJEM.
The TJEM is open to original articles in all branches of medical sciences from authors throughout the world. The TJEM also covers the fields of disaster-prevention science, including earthquake archeology. Case reports, which advance significantly our knowledge on medical sciences or practice, are also accepted. Review articles, Letters to the Editor, Commentary, and News and Views will also be considered. In particular, the TJEM welcomes full papers requiring prompt publication.