PIM kinase inhibitors: an updated patent review (2016-present).

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL Expert Opinion on Therapeutic Patents Pub Date : 2024-05-01 Epub Date: 2024-06-13 DOI:10.1080/13543776.2024.2365411
Anushka Sharma, Rahul Dubey, Shankar Gupta, Vivek Asati, Vipul Kumar, Dileep Kumar, Debarshi Kar Mahapatra, Meenakshi Jaiswal, Sanmati Kumar Jain, Sanjay Kumar Bharti
{"title":"PIM kinase inhibitors: an updated patent review (2016-present).","authors":"Anushka Sharma, Rahul Dubey, Shankar Gupta, Vivek Asati, Vipul Kumar, Dileep Kumar, Debarshi Kar Mahapatra, Meenakshi Jaiswal, Sanmati Kumar Jain, Sanjay Kumar Bharti","doi":"10.1080/13543776.2024.2365411","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer.</p><p><strong>Areas covered: </strong>A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted.</p><p><strong>Expert opinion: </strong>Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"365-382"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2365411","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer.

Areas covered: A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted.

Expert opinion: Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIM 激酶抑制剂:最新专利回顾(2016 年至今)。
简介:PIM 激酶(PIM-1、PIM-2 和 PIM-3据报道,PIM 激酶(PIM-1、PIM-2 和 PIM-3)在控制细胞存活、增殖和分化的信号级联中发挥着至关重要的作用。这些激酶的过度表达会导致血液恶性肿瘤,如弥漫性大 B 细胞淋巴瘤(DLBCL)、多发性骨髓瘤、白血病、淋巴瘤和前列腺癌等。PIM 激酶作为生物标志物和潜在的治疗靶点,有望实现癌症的精准治疗。选择性 PIM-1、PIM-2 和/或 PIM-3 异构体抑制剂已在晚期癌症患者(包括复发/难治性癌症患者)中显示出显著疗效:全面回顾了PIM激酶(PIM-1、PIM-2和PIM-3)在肿瘤发生中的作用,重点介绍了PIM激酶专利抑制剂(2016年至今)及其药理学和结构见解:最近,作为治疗靶点的PIM激酶,即PIM-1、PIM-2和PIM-3(丝氨酸/苏氨酸蛋白激酶家族成员)在肿瘤学领域,尤其是血液恶性肿瘤领域引起了极大的兴趣。三唑并吡啶、吡唑并吡啶、咪唑并哒嗪、噁二唑硫酮、吡唑并嘧啶、三唑并哒嗪、咪唑并哒嗪、吡唑并喹唑啉和吡唑并吡啶等。在癌症化疗中显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
期刊最新文献
Mycobacterium tuberculosis inhibitors: an updated patent review (2021-present). Urease inhibitors for the treatment of H. pylori. A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Menin-MLL protein-protein interaction inhibitors: a patent review (2021-present). Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1