Biomedical applications of prokaryotic carbonic anhydrases: an update.

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL Expert Opinion on Therapeutic Patents Pub Date : 2024-05-01 Epub Date: 2024-06-11 DOI:10.1080/13543776.2024.2365407
Clemente Capasso, Claudiu T Supuran
{"title":"Biomedical applications of prokaryotic carbonic anhydrases: an update.","authors":"Clemente Capasso, Claudiu T Supuran","doi":"10.1080/13543776.2024.2365407","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This review offers an updated perspective on the biomedical applications of prokaryotic carbonic anhydrases (CAs), emphasizing their potential as targets for drug development against antibiotic-resistant bacterial infections. A systematic review of literature from PubMed, Web of Science, and Google Scholar has been conducted to provide a comprehensive analysis.</p><p><strong>Area covered: </strong>It delves into the pivotal roles of prokaryotic CAs in bacterial metabolism and their distinctions from mammalian CAs. The review explores the diversity of CA classes in bacteria, discusses selective inhibitors targeting bacterial CAs, and explores their potential applications in biomedical research. Furthermore, it analyzes clinical trials investigating the efficacy of carbonic anhydrase inhibitors (CAIs) and patented approaches for developing antibacterial CAIs, highlighting their translational potential in creating innovative antibacterial agents.</p><p><strong>Expert opinion: </strong>Recent years have witnessed increased recognition of CA inhibition as a promising strategy against bacterial infections. Challenges persist in achieving selectivity over human isoforms and optimizing therapeutic efficacy. Structural biology techniques provide insights into unique active site architectures, guiding selective inhibitor design. The review underscores the importance of interdisciplinary collaborations, innovative drug delivery systems, and advanced drug discovery approaches in unlocking the full therapeutic potential of prokaryotic CA inhibitors. It emphasizes the significance of these efforts in addressing antibiotic resistance and improving patient outcomes.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2365407","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This review offers an updated perspective on the biomedical applications of prokaryotic carbonic anhydrases (CAs), emphasizing their potential as targets for drug development against antibiotic-resistant bacterial infections. A systematic review of literature from PubMed, Web of Science, and Google Scholar has been conducted to provide a comprehensive analysis.

Area covered: It delves into the pivotal roles of prokaryotic CAs in bacterial metabolism and their distinctions from mammalian CAs. The review explores the diversity of CA classes in bacteria, discusses selective inhibitors targeting bacterial CAs, and explores their potential applications in biomedical research. Furthermore, it analyzes clinical trials investigating the efficacy of carbonic anhydrase inhibitors (CAIs) and patented approaches for developing antibacterial CAIs, highlighting their translational potential in creating innovative antibacterial agents.

Expert opinion: Recent years have witnessed increased recognition of CA inhibition as a promising strategy against bacterial infections. Challenges persist in achieving selectivity over human isoforms and optimizing therapeutic efficacy. Structural biology techniques provide insights into unique active site architectures, guiding selective inhibitor design. The review underscores the importance of interdisciplinary collaborations, innovative drug delivery systems, and advanced drug discovery approaches in unlocking the full therapeutic potential of prokaryotic CA inhibitors. It emphasizes the significance of these efforts in addressing antibiotic resistance and improving patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原核碳酸酐酶的生物医学应用:最新进展。
导言:这篇综述提供了原核生物碳酸酐酶(CAs)生物医学应用的最新视角,强调了它们作为抗生素耐药细菌感染药物开发靶点的潜力。为了提供全面的分析,我们对来自 PubMed、Web of Science 和 Google Scholar 的文献进行了系统综述:该综述深入探讨了原核 CA 在细菌新陈代谢中的关键作用及其与哺乳动物 CA 的区别。综述探讨了细菌中 CA 种类的多样性,讨论了针对细菌 CA 的选择性抑制剂,并探讨了它们在生物医学研究中的潜在应用。此外,它还分析了研究碳酸酐酶抑制剂(CAIs)疗效的临床试验以及开发抗菌 CAIs 的专利方法,强调了它们在创造创新抗菌剂方面的转化潜力:近年来,人们越来越认识到CA抑制剂是一种很有前景的抗细菌感染策略。在实现对人类同工酶的选择性和优化疗效方面,挑战依然存在。结构生物学技术提供了对独特活性位点结构的见解,为选择性抑制剂的设计提供了指导。这篇综述强调了跨学科合作、创新给药系统和先进药物发现方法在充分挖掘原核 CA 抑制剂治疗潜力方面的重要性。它强调了这些努力在解决抗生素耐药性和改善患者预后方面的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
期刊最新文献
A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Urease inhibitors for the treatment of H. pylori. Menin-MLL protein-protein interaction inhibitors: a patent review (2021-present). Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present). A patent review of lactate dehydrogenase inhibitors (2014-present).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1