Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2024-06-03 DOI:10.1016/j.actbio.2024.05.054
Luís P. Ferreira, Carole Jorge, Matilde R. Lagarto, Maria V. Monteiro, Iola F. Duarte, Vítor M. Gaspar, João F. Mano
{"title":"Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs","authors":"Luís P. Ferreira,&nbsp;Carole Jorge,&nbsp;Matilde R. Lagarto,&nbsp;Maria V. Monteiro,&nbsp;Iola F. Duarte,&nbsp;Vítor M. Gaspar,&nbsp;João F. Mano","doi":"10.1016/j.actbio.2024.05.054","DOIUrl":null,"url":null,"abstract":"<div><p>The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue.</p></div><div><h3>Statement of significance</h3><p>Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and <em>in vitro</em> disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.</p></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1742706124003040/pdfft?md5=c3bdc0ec3f15242d5dcecfcacd5c1dfb&pid=1-s2.0-S1742706124003040-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124003040","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue.

Statement of significance

Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and in vitro disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物制造活体结构的脱细胞细胞外基质的光声处理。
组织特异性脱细胞细胞外基质(decellularized extracellular matrix,dECM)生物材料的生物分子结构多种多样,可为靶细胞提供多种生物诱导线索,因此在各种生物医学应用中具有极高的价值。然而,分离 dECM 生物材料需要进行繁琐的异种酶解和额外的灭活程序。这不仅增加了处理时间,增加了成本,而且在 dECM 配方中引入了非天然存在的蛋白质残留,即使在灭活后这些残留仍然存在。为了克服这些局限性,我们在此报告了一种创新的光与超声介导的 dECM 生物材料加工技术,用于制造 dECM 生物材料。这种方法利用超声波促进液中 dECM 处理,并利用可见光光交联 dECM 生物材料中天然存在的酪氨酸残基。这种双步骤方法利用超疏水性表面,在空气中生产出含细胞的 dECM 水凝胶或可编程 dECM 水凝胶球形珠。这些在空气中生产的单元不需要任何额外的溶剂,在封装或表面播种后可成功支持成纤维细胞和乳腺癌细胞的存活。此外,优化的光声方法还能快速配制出具有合适特征的 dECM 生物材料墨水,用于通过嵌入式三维生物打印技术制造体积确定的生物构建体。生物制造的 SdECM 水凝胶构建体支持细胞粘附、扩散和存活 7 天。总之,dECM 生物材料的光声处理方法为从几乎任何组织中升级处理 dECM 生物材料提供了一种快速、通用的策略。意义说明:利用脱细胞基质生物材料作为细胞诱导剂,有可能为组织工程和体外疾病建模开辟新的途径。然而,脱细胞基质的加工过程依然漫长、昂贵,而且会在最终的生物材料配方中引入非天然存在的蛋白质。为此,我们在此报告了一种创新的光和超声介导的 dECM 水凝胶交联方法,该方法可实现液中 dECM 的快速处理以及水凝胶珠和三维生物打印构建物的下游光交联。这种基于声光的处理方法是一种普遍适用的方法,可用于处理任何类型的组织衍生 dECM 生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Structural connectivity and bioactivity in sol–gel silicate glass design Characterization of pediatric porcine pulmonary valves as a model for tissue engineered heart valves Lipopolymer/siRNA complexes engineered for optimal molecular and functional response with chemotherapy in FLT3-mutated acute myeloid leukemia A bifunctional lactoferrin-derived amyloid coating prevents bacterial adhesion and occludes dentinal tubules via deep remineralization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1