Meta-Meshing and Triangulating Lattice Structures at a Large Scale

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer-Aided Design Pub Date : 2024-05-28 DOI:10.1016/j.cad.2024.103732
Qiang Zou, Yunzhu Gao, Guoyue Luo, Sifan Chen
{"title":"Meta-Meshing and Triangulating Lattice Structures at a Large Scale","authors":"Qiang Zou,&nbsp;Yunzhu Gao,&nbsp;Guoyue Luo,&nbsp;Sifan Chen","doi":"10.1016/j.cad.2024.103732","DOIUrl":null,"url":null,"abstract":"<div><p>Lattice structures have been widely used in applications due to their superior mechanical properties. To fabricate such structures, a geometric processing step called triangulation is often employed to transform them into the STL format before sending them to 3D printers. Because lattice structures tend to have high geometric complexity, this step usually generates a large amount of triangles, a memory and compute-intensive task. This problem manifests itself clearly through large-scale lattice structures that have millions or billions of struts. To address this problem, this paper proposes to transform a lattice structure into an intermediate model called meta-mesh before undergoing real triangulation. Compared to triangular meshes, meta-meshes are very lightweight and much less compute-demanding. The meta-mesh can also work as a base mesh reusable for conveniently and efficiently triangulating lattice structures with arbitrary resolutions. A CPU+GPU asynchronous meta-meshing pipeline has been developed to efficiently generate meta-meshes from lattice structures. It shifts from the thread-centric GPU algorithm design paradigm commonly used in CAD to the recent warp-centric design paradigm to achieve high performance. This is achieved by a new data compression method, a GPU cache-aware data structure, and a workload-balanced scheduling method that can significantly reduce memory divergence and branch divergence. Experimenting with various billion-scale lattice structures, the proposed method is seen to be two orders of magnitude faster than previously achievable.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"174 ","pages":"Article 103732"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000599","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice structures have been widely used in applications due to their superior mechanical properties. To fabricate such structures, a geometric processing step called triangulation is often employed to transform them into the STL format before sending them to 3D printers. Because lattice structures tend to have high geometric complexity, this step usually generates a large amount of triangles, a memory and compute-intensive task. This problem manifests itself clearly through large-scale lattice structures that have millions or billions of struts. To address this problem, this paper proposes to transform a lattice structure into an intermediate model called meta-mesh before undergoing real triangulation. Compared to triangular meshes, meta-meshes are very lightweight and much less compute-demanding. The meta-mesh can also work as a base mesh reusable for conveniently and efficiently triangulating lattice structures with arbitrary resolutions. A CPU+GPU asynchronous meta-meshing pipeline has been developed to efficiently generate meta-meshes from lattice structures. It shifts from the thread-centric GPU algorithm design paradigm commonly used in CAD to the recent warp-centric design paradigm to achieve high performance. This is achieved by a new data compression method, a GPU cache-aware data structure, and a workload-balanced scheduling method that can significantly reduce memory divergence and branch divergence. Experimenting with various billion-scale lattice structures, the proposed method is seen to be two orders of magnitude faster than previously achievable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模元网格和三角网格结构
晶格结构因其卓越的机械性能而被广泛应用。为了制造这种结构,通常会采用一个称为三角剖分的几何处理步骤,将其转换为 STL 格式,然后再发送给 3D 打印机。由于晶格结构往往具有较高的几何复杂性,这一步骤通常会生成大量三角形,是一项内存和计算密集型任务。这个问题在拥有数百万或数十亿支柱的大型网格结构中表现得非常明显。为解决这一问题,本文建议在进行真正的三角剖分之前,将网格结构转化为一种称为元网格的中间模型。与三角网格相比,元网格非常轻便,对计算的要求也低得多。元网格还可以作为基础网格,方便高效地对任意分辨率的网格结构进行三角剖分。我们开发了一种 CPU+GPU 异步元网格流水线,可从网格结构高效生成元网格。它将 CAD 中常用的以线程为中心的 GPU 算法设计范式转变为最新的以翘曲为中心的设计范式,以实现高性能。这是通过一种新的数据压缩方法、一种 GPU 缓存感知数据结构和一种可显著减少内存发散和分支发散的工作负载平衡调度方法来实现的。通过对各种十亿尺度晶格结构的实验,可以看到所提出的方法比以前实现的方法快两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer-Aided Design
Computer-Aided Design 工程技术-计算机:软件工程
CiteScore
5.50
自引率
4.70%
发文量
117
审稿时长
4.2 months
期刊介绍: Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design. Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.
期刊最新文献
Editorial Board Plate Manufacturing Constraint in Topology Optimization Using Anisotropic Filter Feature-aware Singularity Structure Optimization for Hex Mesh Fast algorithm for extracting domains and regions from three-dimensional triangular surface meshes Higher-degrees Hybrid Non-uniform Subdivision Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1