MPSA-DenseNet: A novel deep learning model for English accent classification

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Speech and Language Pub Date : 2024-05-30 DOI:10.1016/j.csl.2024.101676
Tianyu Song , Linh Thi Hoai Nguyen , Ton Viet Ta
{"title":"MPSA-DenseNet: A novel deep learning model for English accent classification","authors":"Tianyu Song ,&nbsp;Linh Thi Hoai Nguyen ,&nbsp;Ton Viet Ta","doi":"10.1016/j.csl.2024.101676","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents three innovative deep learning models for English accent classification: Multi-task Pyramid Split Attention- Densely Convolutional Networks (MPSA-DenseNet), Pyramid Split Attention- Densely Convolutional Networks (PSA-DenseNet), and Multi-task- Densely Convolutional Networks (Multi-DenseNet), that combine multi-task learning and/or the PSA module attention mechanism with DenseNet. We applied these models to data collected from five dialects of English across native English-speaking regions (England, the United States) and nonnative English-speaking regions (Hong Kong, Germany, India). Our experimental results show a significant improvement in classification accuracy, particularly with MPSA-DenseNet, which outperforms all other models, including Densely Convolutional Networks (DenseNet) and Efficient Pyramid Squeeze Attention (EPSA) models previously used for accent identification. Our findings indicate that MPSA-DenseNet is a highly promising model for accurately identifying English accents.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101676"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000597/pdfft?md5=45eac4ef8fe33cc3af54ca5ce1756899&pid=1-s2.0-S0885230824000597-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000597","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents three innovative deep learning models for English accent classification: Multi-task Pyramid Split Attention- Densely Convolutional Networks (MPSA-DenseNet), Pyramid Split Attention- Densely Convolutional Networks (PSA-DenseNet), and Multi-task- Densely Convolutional Networks (Multi-DenseNet), that combine multi-task learning and/or the PSA module attention mechanism with DenseNet. We applied these models to data collected from five dialects of English across native English-speaking regions (England, the United States) and nonnative English-speaking regions (Hong Kong, Germany, India). Our experimental results show a significant improvement in classification accuracy, particularly with MPSA-DenseNet, which outperforms all other models, including Densely Convolutional Networks (DenseNet) and Efficient Pyramid Squeeze Attention (EPSA) models previously used for accent identification. Our findings indicate that MPSA-DenseNet is a highly promising model for accurately identifying English accents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPSA-DenseNet:用于英语口音分类的新型深度学习模型
本文介绍了三种用于英语口音分类的创新型深度学习模型:多任务金字塔分裂注意力-密集卷积网络(MPSA-DenseNet)、金字塔分裂注意力-密集卷积网络(PSA-DenseNet)和多任务-密集卷积网络(Multi-DenseNet),它们将多任务学习和/或 PSA 模块注意力机制与 DenseNet 结合在一起。我们将这些模型应用于从英语母语地区(英国、美国)和非英语母语地区(香港、德国、印度)的五种英语方言中收集的数据。实验结果表明,MPSA-DenseNet 的分类准确率有了显著提高,尤其是 MPSA-DenseNet,它优于所有其他模型,包括以前用于口音识别的密集卷积网络(DenseNet)和高效金字塔挤压注意(EPSA)模型。我们的研究结果表明,MPSA-DenseNet 是一种非常有前途的准确识别英语口音的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
期刊最新文献
Modeling correlated causal-effect structure with a hypergraph for document-level event causality identification You Are What You Write: Author re-identification privacy attacks in the era of pre-trained language models End-to-End Speech-to-Text Translation: A Survey Corpus and unsupervised benchmark: Towards Tagalog grammatical error correction TR-Net: Token Relation Inspired Table Filling Network for Joint Entity and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1